![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq12d | Structured version Visualization version GIF version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ineq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ineq12d | ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ineq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | ineq12 4207 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∩ cin 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-in 3955 |
This theorem is referenced by: csbin 4439 predeq123 6301 funcnvtp 6611 fnunres1 6661 ofrfvalg 7677 offval 7678 oev2 8522 isf32lem7 10353 ressval 17175 invffval 17704 invfval 17705 dfiso2 17718 isofn 17721 oppcinv 17726 zerooval 17944 cat1 18046 isps 18520 dmdprd 19867 dprddisj 19878 dprdf1o 19901 dmdprdsplit2lem 19914 dmdprdpr 19918 pgpfaclem1 19950 isunit 20186 dfrhm2 20252 isrhm 20256 2idlval 20857 pjfval 21260 aspval 21426 ressmplbas2 21581 isconn 22916 connsuba 22923 ptbasin 23080 ptclsg 23118 qtopval 23198 rnelfmlem 23455 trust 23733 isnmhm 24262 uniioombllem2a 25098 dyaddisjlem 25111 dyaddisj 25112 i1faddlem 25209 i1fmullem 25210 limcflf 25397 ewlksfval 28855 isewlk 28856 ewlkinedg 28858 ispth 28977 trlsegvdeg 29477 frcond3 29519 numclwwlk3lem2 29634 chocin 30743 cmbr3 30856 pjoml3 30860 fh1 30866 xppreima2 31871 cosnopne 31911 swrdrndisj 32116 hauseqcn 32873 prsssdm 32892 ordtrestNEW 32896 ordtrest2NEW 32898 cndprobval 33427 ballotlemfrc 33520 bnj1421 34048 satffunlem 34387 satffunlem1lem2 34389 satffunlem2lem1 34390 satffunlem2lem2 34392 msrval 34524 msrf 34528 ismfs 34535 clsun 35208 poimirlem8 36491 itg2addnclem2 36535 heiborlem4 36677 heiborlem6 36679 heiborlem10 36683 pmodl42N 38717 polfvalN 38770 poldmj1N 38794 pmapj2N 38795 pnonsingN 38799 psubclinN 38814 poml4N 38819 osumcllem9N 38830 trnfsetN 39021 diainN 39923 djaffvalN 39999 djafvalN 40000 djajN 40003 dihmeetcl 40211 dihmeet2 40212 dochnoncon 40257 djhffval 40262 djhfval 40263 djhlj 40267 dochdmm1 40276 lclkrlem2g 40379 lclkrlem2v 40394 lcfrlem21 40429 lcfrlem24 40432 mapdunirnN 40516 baerlem5amN 40582 baerlem5bmN 40583 baerlem5abmN 40584 mapdheq4lem 40597 mapdh6lem1N 40599 mapdh6lem2N 40600 hdmap1l6lem1 40673 hdmap1l6lem2 40674 aomclem8 41793 disjrnmpt2 43876 dvsinax 44619 dvcosax 44632 nnfoctbdjlem 45161 smfpimcc 45514 smfsuplem2 45518 rhmval 46712 iscnrm3l 47574 |
Copyright terms: Public domain | W3C validator |