![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq12d | Structured version Visualization version GIF version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ineq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ineq12d | ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ineq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | ineq12 4222 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∩ cin 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-in 3969 |
This theorem is referenced by: csbin 4447 predeq123 6323 funcnvtp 6630 fnunres1 6680 ofrfvalg 7704 offval 7705 oev2 8559 isf32lem7 10396 ressval 17276 invffval 17805 invfval 17806 dfiso2 17819 isofn 17822 oppcinv 17827 zerooval 18048 cat1 18150 isps 18625 dmdprd 20032 dprddisj 20043 dprdf1o 20066 dmdprdsplit2lem 20079 dmdprdpr 20083 pgpfaclem1 20115 isunit 20389 dfrhm2 20490 isrhm 20494 rhmval 20516 2idlval 21278 pjfval 21743 aspval 21910 ressmplbas2 22062 isconn 23436 connsuba 23443 ptbasin 23600 ptclsg 23638 qtopval 23718 rnelfmlem 23975 trust 24253 isnmhm 24782 uniioombllem2a 25630 dyaddisjlem 25643 dyaddisj 25644 i1faddlem 25741 i1fmullem 25742 limcflf 25930 ewlksfval 29633 isewlk 29634 ewlkinedg 29636 ispth 29755 trlsegvdeg 30255 frcond3 30297 numclwwlk3lem2 30412 chocin 31523 cmbr3 31636 pjoml3 31640 fh1 31646 xppreima2 32667 cosnopne 32708 swrdrndisj 32926 hauseqcn 33858 prsssdm 33877 ordtrestNEW 33881 ordtrest2NEW 33883 cndprobval 34414 ballotlemfrc 34507 bnj1421 35034 satffunlem 35385 satffunlem1lem2 35387 satffunlem2lem1 35388 satffunlem2lem2 35390 msrval 35522 msrf 35526 ismfs 35533 clsun 36310 poimirlem8 37614 itg2addnclem2 37658 heiborlem4 37800 heiborlem6 37802 heiborlem10 37806 pmodl42N 39833 polfvalN 39886 poldmj1N 39910 pmapj2N 39911 pnonsingN 39915 psubclinN 39930 poml4N 39935 osumcllem9N 39946 trnfsetN 40137 diainN 41039 djaffvalN 41115 djafvalN 41116 djajN 41119 dihmeetcl 41327 dihmeet2 41328 dochnoncon 41373 djhffval 41378 djhfval 41379 djhlj 41383 dochdmm1 41392 lclkrlem2g 41495 lclkrlem2v 41510 lcfrlem21 41545 lcfrlem24 41548 mapdunirnN 41632 baerlem5amN 41698 baerlem5bmN 41699 baerlem5abmN 41700 mapdheq4lem 41713 mapdh6lem1N 41715 mapdh6lem2N 41716 hdmap1l6lem1 41789 hdmap1l6lem2 41790 aomclem8 43049 disjrnmpt2 45130 dvsinax 45868 dvcosax 45881 nnfoctbdjlem 46410 smfpimcc 46763 smfsuplem2 46767 iscnrm3l 48747 |
Copyright terms: Public domain | W3C validator |