![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq12d | Structured version Visualization version GIF version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ineq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ineq12d | ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ineq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | ineq12 4208 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | syl2anc 585 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∩ cin 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-in 3956 |
This theorem is referenced by: csbin 4440 predeq123 6302 funcnvtp 6612 fnunres1 6662 ofrfvalg 7678 offval 7679 oev2 8523 isf32lem7 10354 ressval 17176 invffval 17705 invfval 17706 dfiso2 17719 isofn 17722 oppcinv 17727 zerooval 17945 cat1 18047 isps 18521 dmdprd 19868 dprddisj 19879 dprdf1o 19902 dmdprdsplit2lem 19915 dmdprdpr 19919 pgpfaclem1 19951 isunit 20187 dfrhm2 20253 isrhm 20257 2idlval 20858 pjfval 21261 aspval 21427 ressmplbas2 21582 isconn 22917 connsuba 22924 ptbasin 23081 ptclsg 23119 qtopval 23199 rnelfmlem 23456 trust 23734 isnmhm 24263 uniioombllem2a 25099 dyaddisjlem 25112 dyaddisj 25113 i1faddlem 25210 i1fmullem 25211 limcflf 25398 ewlksfval 28858 isewlk 28859 ewlkinedg 28861 ispth 28980 trlsegvdeg 29480 frcond3 29522 numclwwlk3lem2 29637 chocin 30748 cmbr3 30861 pjoml3 30865 fh1 30871 xppreima2 31876 cosnopne 31916 swrdrndisj 32121 hauseqcn 32878 prsssdm 32897 ordtrestNEW 32901 ordtrest2NEW 32903 cndprobval 33432 ballotlemfrc 33525 bnj1421 34053 satffunlem 34392 satffunlem1lem2 34394 satffunlem2lem1 34395 satffunlem2lem2 34397 msrval 34529 msrf 34533 ismfs 34540 clsun 35213 poimirlem8 36496 itg2addnclem2 36540 heiborlem4 36682 heiborlem6 36684 heiborlem10 36688 pmodl42N 38722 polfvalN 38775 poldmj1N 38799 pmapj2N 38800 pnonsingN 38804 psubclinN 38819 poml4N 38824 osumcllem9N 38835 trnfsetN 39026 diainN 39928 djaffvalN 40004 djafvalN 40005 djajN 40008 dihmeetcl 40216 dihmeet2 40217 dochnoncon 40262 djhffval 40267 djhfval 40268 djhlj 40272 dochdmm1 40281 lclkrlem2g 40384 lclkrlem2v 40399 lcfrlem21 40434 lcfrlem24 40437 mapdunirnN 40521 baerlem5amN 40587 baerlem5bmN 40588 baerlem5abmN 40589 mapdheq4lem 40602 mapdh6lem1N 40604 mapdh6lem2N 40605 hdmap1l6lem1 40678 hdmap1l6lem2 40679 aomclem8 41803 disjrnmpt2 43886 dvsinax 44629 dvcosax 44642 nnfoctbdjlem 45171 smfpimcc 45524 smfsuplem2 45528 rhmval 46722 iscnrm3l 47584 |
Copyright terms: Public domain | W3C validator |