![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq12d | Structured version Visualization version GIF version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ineq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ineq12d | ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ineq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | ineq12 4236 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-in 3983 |
This theorem is referenced by: csbin 4465 predeq123 6333 funcnvtp 6641 fnunres1 6691 ofrfvalg 7722 offval 7723 oev2 8579 isf32lem7 10428 ressval 17290 invffval 17819 invfval 17820 dfiso2 17833 isofn 17836 oppcinv 17841 zerooval 18062 cat1 18164 isps 18638 dmdprd 20042 dprddisj 20053 dprdf1o 20076 dmdprdsplit2lem 20089 dmdprdpr 20093 pgpfaclem1 20125 isunit 20399 dfrhm2 20500 isrhm 20504 rhmval 20526 2idlval 21284 pjfval 21749 aspval 21916 ressmplbas2 22068 isconn 23442 connsuba 23449 ptbasin 23606 ptclsg 23644 qtopval 23724 rnelfmlem 23981 trust 24259 isnmhm 24788 uniioombllem2a 25636 dyaddisjlem 25649 dyaddisj 25650 i1faddlem 25747 i1fmullem 25748 limcflf 25936 ewlksfval 29637 isewlk 29638 ewlkinedg 29640 ispth 29759 trlsegvdeg 30259 frcond3 30301 numclwwlk3lem2 30416 chocin 31527 cmbr3 31640 pjoml3 31644 fh1 31650 xppreima2 32669 cosnopne 32706 swrdrndisj 32924 hauseqcn 33844 prsssdm 33863 ordtrestNEW 33867 ordtrest2NEW 33869 cndprobval 34398 ballotlemfrc 34491 bnj1421 35018 satffunlem 35369 satffunlem1lem2 35371 satffunlem2lem1 35372 satffunlem2lem2 35374 msrval 35506 msrf 35510 ismfs 35517 clsun 36294 poimirlem8 37588 itg2addnclem2 37632 heiborlem4 37774 heiborlem6 37776 heiborlem10 37780 pmodl42N 39808 polfvalN 39861 poldmj1N 39885 pmapj2N 39886 pnonsingN 39890 psubclinN 39905 poml4N 39910 osumcllem9N 39921 trnfsetN 40112 diainN 41014 djaffvalN 41090 djafvalN 41091 djajN 41094 dihmeetcl 41302 dihmeet2 41303 dochnoncon 41348 djhffval 41353 djhfval 41354 djhlj 41358 dochdmm1 41367 lclkrlem2g 41470 lclkrlem2v 41485 lcfrlem21 41520 lcfrlem24 41523 mapdunirnN 41607 baerlem5amN 41673 baerlem5bmN 41674 baerlem5abmN 41675 mapdheq4lem 41688 mapdh6lem1N 41690 mapdh6lem2N 41691 hdmap1l6lem1 41764 hdmap1l6lem2 41765 aomclem8 43018 disjrnmpt2 45095 dvsinax 45834 dvcosax 45847 nnfoctbdjlem 46376 smfpimcc 46729 smfsuplem2 46733 iscnrm3l 48631 |
Copyright terms: Public domain | W3C validator |