Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq12d | Structured version Visualization version GIF version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ineq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ineq12d | ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ineq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | ineq12 4138 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-in 3890 |
This theorem is referenced by: csbin 4370 predeq123 6192 funcnvtp 6481 ofrfvalg 7519 offval 7520 oev2 8315 isf32lem7 10046 ressval 16870 invffval 17387 invfval 17388 dfiso2 17401 isofn 17404 oppcinv 17409 zerooval 17626 cat1 17728 isps 18201 dmdprd 19516 dprddisj 19527 dprdf1o 19550 dmdprdsplit2lem 19563 dmdprdpr 19567 pgpfaclem1 19599 isunit 19814 dfrhm2 19876 isrhm 19880 2idlval 20417 pjfval 20823 aspval 20987 ressmplbas2 21138 isconn 22472 connsuba 22479 ptbasin 22636 ptclsg 22674 qtopval 22754 rnelfmlem 23011 trust 23289 isnmhm 23816 uniioombllem2a 24651 dyaddisjlem 24664 dyaddisj 24665 i1faddlem 24762 i1fmullem 24763 limcflf 24950 ewlksfval 27871 isewlk 27872 ewlkinedg 27874 ispth 27992 trlsegvdeg 28492 frcond3 28534 numclwwlk3lem2 28649 chocin 29758 cmbr3 29871 pjoml3 29875 fh1 29881 fnunres1 30846 xppreima2 30889 cosnopne 30929 swrdrndisj 31131 hauseqcn 31750 prsssdm 31769 ordtrestNEW 31773 ordtrest2NEW 31775 cndprobval 32300 ballotlemfrc 32393 bnj1421 32922 satffunlem 33263 satffunlem1lem2 33265 satffunlem2lem1 33266 satffunlem2lem2 33268 msrval 33400 msrf 33404 ismfs 33411 clsun 34444 poimirlem8 35712 itg2addnclem2 35756 heiborlem4 35899 heiborlem6 35901 heiborlem10 35905 pmodl42N 37792 polfvalN 37845 poldmj1N 37869 pmapj2N 37870 pnonsingN 37874 psubclinN 37889 poml4N 37894 osumcllem9N 37905 trnfsetN 38096 diainN 38998 djaffvalN 39074 djafvalN 39075 djajN 39078 dihmeetcl 39286 dihmeet2 39287 dochnoncon 39332 djhffval 39337 djhfval 39338 djhlj 39342 dochdmm1 39351 lclkrlem2g 39454 lclkrlem2v 39469 lcfrlem21 39504 lcfrlem24 39507 mapdunirnN 39591 baerlem5amN 39657 baerlem5bmN 39658 baerlem5abmN 39659 mapdheq4lem 39672 mapdh6lem1N 39674 mapdh6lem2N 39675 hdmap1l6lem1 39748 hdmap1l6lem2 39749 aomclem8 40802 disjrnmpt2 42615 dvsinax 43344 dvcosax 43357 nnfoctbdjlem 43883 smfpimcc 44228 smfsuplem2 44232 rhmval 45365 iscnrm3l 46133 |
Copyright terms: Public domain | W3C validator |