![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq12d | Structured version Visualization version GIF version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ineq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ineq12d | ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ineq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | ineq12 4208 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | syl2anc 585 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∩ cin 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-in 3956 |
This theorem is referenced by: csbin 4440 predeq123 6302 funcnvtp 6612 fnunres1 6662 ofrfvalg 7678 offval 7679 oev2 8523 isf32lem7 10354 ressval 17176 invffval 17705 invfval 17706 dfiso2 17719 isofn 17722 oppcinv 17727 zerooval 17945 cat1 18047 isps 18521 dmdprd 19868 dprddisj 19879 dprdf1o 19902 dmdprdsplit2lem 19915 dmdprdpr 19919 pgpfaclem1 19951 isunit 20187 dfrhm2 20253 isrhm 20257 2idlval 20858 pjfval 21261 aspval 21427 ressmplbas2 21582 isconn 22917 connsuba 22924 ptbasin 23081 ptclsg 23119 qtopval 23199 rnelfmlem 23456 trust 23734 isnmhm 24263 uniioombllem2a 25099 dyaddisjlem 25112 dyaddisj 25113 i1faddlem 25210 i1fmullem 25211 limcflf 25398 ewlksfval 28889 isewlk 28890 ewlkinedg 28892 ispth 29011 trlsegvdeg 29511 frcond3 29553 numclwwlk3lem2 29668 chocin 30779 cmbr3 30892 pjoml3 30896 fh1 30902 xppreima2 31907 cosnopne 31947 swrdrndisj 32152 hauseqcn 32909 prsssdm 32928 ordtrestNEW 32932 ordtrest2NEW 32934 cndprobval 33463 ballotlemfrc 33556 bnj1421 34084 satffunlem 34423 satffunlem1lem2 34425 satffunlem2lem1 34426 satffunlem2lem2 34428 msrval 34560 msrf 34564 ismfs 34571 clsun 35261 poimirlem8 36544 itg2addnclem2 36588 heiborlem4 36730 heiborlem6 36732 heiborlem10 36736 pmodl42N 38770 polfvalN 38823 poldmj1N 38847 pmapj2N 38848 pnonsingN 38852 psubclinN 38867 poml4N 38872 osumcllem9N 38883 trnfsetN 39074 diainN 39976 djaffvalN 40052 djafvalN 40053 djajN 40056 dihmeetcl 40264 dihmeet2 40265 dochnoncon 40310 djhffval 40315 djhfval 40316 djhlj 40320 dochdmm1 40329 lclkrlem2g 40432 lclkrlem2v 40447 lcfrlem21 40482 lcfrlem24 40485 mapdunirnN 40569 baerlem5amN 40635 baerlem5bmN 40636 baerlem5abmN 40637 mapdheq4lem 40650 mapdh6lem1N 40652 mapdh6lem2N 40653 hdmap1l6lem1 40726 hdmap1l6lem2 40727 aomclem8 41851 disjrnmpt2 43934 dvsinax 44677 dvcosax 44690 nnfoctbdjlem 45219 smfpimcc 45572 smfsuplem2 45576 rhmval 46770 iscnrm3l 47632 |
Copyright terms: Public domain | W3C validator |