![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > conntop | Structured version Visualization version GIF version |
Description: A connected topology is a topology. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 14-Dec-2013.) |
Ref | Expression |
---|---|
conntop | ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | isconn 23337 | . 2 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, ∪ 𝐽})) |
3 | 2 | simplbi 496 | 1 ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∩ cin 3948 ∅c0 4326 {cpr 4634 ∪ cuni 4912 ‘cfv 6553 Topctop 22815 Clsdccld 22940 Conncconn 23335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-iota 6505 df-fv 6561 df-conn 23336 |
This theorem is referenced by: conncompss 23357 txconn 23613 qtopconn 23633 ufildr 23855 connpconn 34878 cvmliftmolem1 34924 cvmliftmolem2 34925 ordtopconn 35956 |
Copyright terms: Public domain | W3C validator |