MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conntop Structured version   Visualization version   GIF version

Theorem conntop 22549
Description: A connected topology is a topology. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 14-Dec-2013.)
Assertion
Ref Expression
conntop (𝐽 ∈ Conn → 𝐽 ∈ Top)

Proof of Theorem conntop
StepHypRef Expression
1 eqid 2739 . . 3 𝐽 = 𝐽
21isconn 22545 . 2 (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝐽}))
32simplbi 497 1 (𝐽 ∈ Conn → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  cin 3890  c0 4261  {cpr 4568   cuni 4844  cfv 6430  Topctop 22023  Clsdccld 22148  Conncconn 22543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-conn 22544
This theorem is referenced by:  conncompss  22565  txconn  22821  qtopconn  22841  ufildr  23063  connpconn  33176  cvmliftmolem1  33222  cvmliftmolem2  33223  ordtopconn  34607
  Copyright terms: Public domain W3C validator