Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > conntop | Structured version Visualization version GIF version |
Description: A connected topology is a topology. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 14-Dec-2013.) |
Ref | Expression |
---|---|
conntop | ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | isconn 22613 | . 2 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, ∪ 𝐽})) |
3 | 2 | simplbi 499 | 1 ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 ∅c0 4262 {cpr 4567 ∪ cuni 4844 ‘cfv 6458 Topctop 22091 Clsdccld 22216 Conncconn 22611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-conn 22612 |
This theorem is referenced by: conncompss 22633 txconn 22889 qtopconn 22909 ufildr 23131 connpconn 33246 cvmliftmolem1 33292 cvmliftmolem2 33293 ordtopconn 34677 |
Copyright terms: Public domain | W3C validator |