| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > conntop | Structured version Visualization version GIF version | ||
| Description: A connected topology is a topology. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 14-Dec-2013.) |
| Ref | Expression |
|---|---|
| conntop | ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | isconn 23356 | . 2 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, ∪ 𝐽})) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ∅c0 4313 {cpr 4608 ∪ cuni 4888 ‘cfv 6536 Topctop 22836 Clsdccld 22959 Conncconn 23354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-conn 23355 |
| This theorem is referenced by: conncompss 23376 txconn 23632 qtopconn 23652 ufildr 23874 connpconn 35262 cvmliftmolem1 35308 cvmliftmolem2 35309 ordtopconn 36462 |
| Copyright terms: Public domain | W3C validator |