Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > conntop | Structured version Visualization version GIF version |
Description: A connected topology is a topology. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 14-Dec-2013.) |
Ref | Expression |
---|---|
conntop | ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | isconn 22545 | . 2 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, ∪ 𝐽})) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∩ cin 3890 ∅c0 4261 {cpr 4568 ∪ cuni 4844 ‘cfv 6430 Topctop 22023 Clsdccld 22148 Conncconn 22543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-conn 22544 |
This theorem is referenced by: conncompss 22565 txconn 22821 qtopconn 22841 ufildr 23063 connpconn 33176 cvmliftmolem1 33222 cvmliftmolem2 33223 ordtopconn 34607 |
Copyright terms: Public domain | W3C validator |