MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcusp Structured version   Visualization version   GIF version

Theorem cmetcusp 24862
Description: The uniform space generated by a complete metric is a complete uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
cmetcusp ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (toUnifSp‘(metUnif‘𝐷)) ∈ CUnifSp)

Proof of Theorem cmetcusp
Dummy variables 𝑥 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetmet 24794 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
2 metxmet 23831 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3 xmetpsmet 23845 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
41, 2, 33syl 18 . . . 4 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
54anim2i 617 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)))
6 metuust 24060 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋))
7 eqid 2732 . . . 4 (toUnifSp‘(metUnif‘𝐷)) = (toUnifSp‘(metUnif‘𝐷))
87tususp 23768 . . 3 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (toUnifSp‘(metUnif‘𝐷)) ∈ UnifSp)
95, 6, 83syl 18 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (toUnifSp‘(metUnif‘𝐷)) ∈ UnifSp)
10 simpll 765 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → (𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)))
1110simprd 496 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝐷 ∈ (CMet‘𝑋))
121, 2syl 17 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
1312ad3antlr 729 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝐷 ∈ (∞Met‘𝑋))
147tusbas 23764 . . . . . . . . . . . 12 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘(toUnifSp‘(metUnif‘𝐷))))
1514fveq2d 6892 . . . . . . . . . . 11 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (Fil‘𝑋) = (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷)))))
1615eleq2d 2819 . . . . . . . . . 10 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (𝑐 ∈ (Fil‘𝑋) ↔ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))))
175, 6, 163syl 18 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑐 ∈ (Fil‘𝑋) ↔ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))))
1817biimpar 478 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (Fil‘𝑋))
1918adantr 481 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (Fil‘𝑋))
207tususs 23766 . . . . . . . . . . . . 13 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (metUnif‘𝐷) = (UnifSt‘(toUnifSp‘(metUnif‘𝐷))))
2120fveq2d 6892 . . . . . . . . . . . 12 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (CauFilu‘(metUnif‘𝐷)) = (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))))
225, 6, 213syl 18 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (CauFilu‘(metUnif‘𝐷)) = (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))))
2322eleq2d 2819 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))))
2423biimpar 478 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (CauFilu‘(metUnif‘𝐷)))
2524adantlr 713 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (CauFilu‘(metUnif‘𝐷)))
26 cfilucfil2 24061 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ (𝑐 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
275, 26syl 17 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ (𝑐 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
2827simplbda 500 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (CauFilu‘(metUnif‘𝐷))) → ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
2910, 25, 28syl2anc 584 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
30 iscfil 24773 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝑐 ∈ (CauFil‘𝐷) ↔ (𝑐 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
3130biimpar 478 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑐 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → 𝑐 ∈ (CauFil‘𝐷))
3213, 19, 29, 31syl12anc 835 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (CauFil‘𝐷))
33 eqid 2732 . . . . . . 7 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3433cmetcvg 24793 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑐 ∈ (CauFil‘𝐷)) → ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
3511, 32, 34syl2anc 584 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
36 eqid 2732 . . . . . . . . . . 11 (unifTop‘(metUnif‘𝐷)) = (unifTop‘(metUnif‘𝐷))
377, 36tustopn 23767 . . . . . . . . . 10 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (unifTop‘(metUnif‘𝐷)) = (TopOpen‘(toUnifSp‘(metUnif‘𝐷))))
385, 6, 373syl 18 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (TopOpen‘(toUnifSp‘(metUnif‘𝐷))))
3912anim2i 617 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)))
40 xmetutop 24068 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷))
4139, 40syl 17 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷))
4238, 41eqtr3d 2774 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (TopOpen‘(toUnifSp‘(metUnif‘𝐷))) = (MetOpen‘𝐷))
4342oveq1d 7420 . . . . . . 7 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) = ((MetOpen‘𝐷) fLim 𝑐))
4443neeq1d 3000 . . . . . 6 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
4544biimpar 478 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅)
4610, 35, 45syl2anc 584 . . . 4 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅)
4746ex 413 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) → (𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅))
4847ralrimiva 3146 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → ∀𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))(𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅))
49 iscusp 23795 . 2 ((toUnifSp‘(metUnif‘𝐷)) ∈ CUnifSp ↔ ((toUnifSp‘(metUnif‘𝐷)) ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))(𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅)))
509, 48, 49sylanbrc 583 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (toUnifSp‘(metUnif‘𝐷)) ∈ CUnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  wss 3947  c0 4321   × cxp 5673  cima 5678  cfv 6540  (class class class)co 7405  0cc0 11106  +crp 12970  [,)cico 13322  Basecbs 17140  TopOpenctopn 17363  PsMetcpsmet 20920  ∞Metcxmet 20921  Metcmet 20922  fBascfbas 20924  MetOpencmopn 20926  metUnifcmetu 20927  Filcfil 23340   fLim cflim 23429  UnifOncust 23695  unifTopcutop 23726  UnifStcuss 23749  UnifSpcusp 23750  toUnifSpctus 23751  CauFiluccfilu 23782  CUnifSpccusp 23793  CauFilccfil 24760  CMetccmet 24762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ico 13326  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-tset 17212  df-unif 17216  df-rest 17364  df-topn 17365  df-topgen 17385  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-fbas 20933  df-fg 20934  df-metu 20935  df-fil 23341  df-ust 23696  df-utop 23727  df-uss 23752  df-usp 23753  df-tus 23754  df-cfilu 23783  df-cusp 23794  df-cfil 24763  df-cmet 24765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator