MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcusp Structured version   Visualization version   GIF version

Theorem cmetcusp 25291
Description: The uniform space generated by a complete metric is a complete uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
cmetcusp ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (toUnifSp‘(metUnif‘𝐷)) ∈ CUnifSp)

Proof of Theorem cmetcusp
Dummy variables 𝑥 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetmet 25223 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
2 metxmet 24259 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3 xmetpsmet 24273 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
41, 2, 33syl 18 . . . 4 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
54anim2i 617 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)))
6 metuust 24485 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋))
7 eqid 2733 . . . 4 (toUnifSp‘(metUnif‘𝐷)) = (toUnifSp‘(metUnif‘𝐷))
87tususp 24196 . . 3 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (toUnifSp‘(metUnif‘𝐷)) ∈ UnifSp)
95, 6, 83syl 18 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (toUnifSp‘(metUnif‘𝐷)) ∈ UnifSp)
10 simpll 766 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → (𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)))
1110simprd 495 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝐷 ∈ (CMet‘𝑋))
121, 2syl 17 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
1312ad3antlr 731 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝐷 ∈ (∞Met‘𝑋))
147tusbas 24192 . . . . . . . . . . . 12 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘(toUnifSp‘(metUnif‘𝐷))))
1514fveq2d 6835 . . . . . . . . . . 11 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (Fil‘𝑋) = (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷)))))
1615eleq2d 2819 . . . . . . . . . 10 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (𝑐 ∈ (Fil‘𝑋) ↔ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))))
175, 6, 163syl 18 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑐 ∈ (Fil‘𝑋) ↔ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))))
1817biimpar 477 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (Fil‘𝑋))
1918adantr 480 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (Fil‘𝑋))
207tususs 24194 . . . . . . . . . . . . 13 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (metUnif‘𝐷) = (UnifSt‘(toUnifSp‘(metUnif‘𝐷))))
2120fveq2d 6835 . . . . . . . . . . . 12 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (CauFilu‘(metUnif‘𝐷)) = (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))))
225, 6, 213syl 18 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (CauFilu‘(metUnif‘𝐷)) = (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))))
2322eleq2d 2819 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))))
2423biimpar 477 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (CauFilu‘(metUnif‘𝐷)))
2524adantlr 715 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (CauFilu‘(metUnif‘𝐷)))
26 cfilucfil2 24486 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ (𝑐 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
275, 26syl 17 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ (𝑐 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
2827simplbda 499 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (CauFilu‘(metUnif‘𝐷))) → ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
2910, 25, 28syl2anc 584 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
30 iscfil 25202 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝑐 ∈ (CauFil‘𝐷) ↔ (𝑐 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
3130biimpar 477 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑐 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → 𝑐 ∈ (CauFil‘𝐷))
3213, 19, 29, 31syl12anc 836 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (CauFil‘𝐷))
33 eqid 2733 . . . . . . 7 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3433cmetcvg 25222 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑐 ∈ (CauFil‘𝐷)) → ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
3511, 32, 34syl2anc 584 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
36 eqid 2733 . . . . . . . . . . 11 (unifTop‘(metUnif‘𝐷)) = (unifTop‘(metUnif‘𝐷))
377, 36tustopn 24195 . . . . . . . . . 10 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (unifTop‘(metUnif‘𝐷)) = (TopOpen‘(toUnifSp‘(metUnif‘𝐷))))
385, 6, 373syl 18 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (TopOpen‘(toUnifSp‘(metUnif‘𝐷))))
3912anim2i 617 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)))
40 xmetutop 24493 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷))
4139, 40syl 17 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷))
4238, 41eqtr3d 2770 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (TopOpen‘(toUnifSp‘(metUnif‘𝐷))) = (MetOpen‘𝐷))
4342oveq1d 7370 . . . . . . 7 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) = ((MetOpen‘𝐷) fLim 𝑐))
4443neeq1d 2989 . . . . . 6 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
4544biimpar 477 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅)
4610, 35, 45syl2anc 584 . . . 4 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅)
4746ex 412 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) → (𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅))
4847ralrimiva 3126 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → ∀𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))(𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅))
49 iscusp 24223 . 2 ((toUnifSp‘(metUnif‘𝐷)) ∈ CUnifSp ↔ ((toUnifSp‘(metUnif‘𝐷)) ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))(𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅)))
509, 48, 49sylanbrc 583 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (toUnifSp‘(metUnif‘𝐷)) ∈ CUnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2930  wral 3049  wrex 3058  wss 3899  c0 4284   × cxp 5619  cima 5624  cfv 6489  (class class class)co 7355  0cc0 11016  +crp 12900  [,)cico 13257  Basecbs 17130  TopOpenctopn 17335  PsMetcpsmet 21285  ∞Metcxmet 21286  Metcmet 21287  fBascfbas 21289  MetOpencmopn 21291  metUnifcmetu 21292  Filcfil 23770   fLim cflim 23859  UnifOncust 24125  unifTopcutop 24155  UnifStcuss 24178  UnifSpcusp 24179  toUnifSpctus 24180  CauFiluccfilu 24210  CUnifSpccusp 24221  CauFilccfil 25189  CMetccmet 25191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-inf 9337  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ico 13261  df-fz 13418  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-tset 17190  df-unif 17194  df-rest 17336  df-topn 17337  df-topgen 17357  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-metu 21300  df-fil 23771  df-ust 24126  df-utop 24156  df-uss 24181  df-usp 24182  df-tus 24183  df-cfilu 24211  df-cusp 24222  df-cfil 25192  df-cmet 25194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator