MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpi1 Structured version   Visualization version   GIF version

Theorem lpi1 21172
Description: The unit ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdealβ€˜π‘…)
lpi1.b 𝐡 = (Baseβ€˜π‘…)
Assertion
Ref Expression
lpi1 (𝑅 ∈ Ring β†’ 𝐡 ∈ 𝑃)

Proof of Theorem lpi1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 lpi1.b . . . 4 𝐡 = (Baseβ€˜π‘…)
2 eqid 2724 . . . 4 (1rβ€˜π‘…) = (1rβ€˜π‘…)
31, 2ringidcl 20157 . . 3 (𝑅 ∈ Ring β†’ (1rβ€˜π‘…) ∈ 𝐡)
4 eqid 2724 . . . . 5 (RSpanβ€˜π‘…) = (RSpanβ€˜π‘…)
54, 1, 2rsp1 21088 . . . 4 (𝑅 ∈ Ring β†’ ((RSpanβ€˜π‘…)β€˜{(1rβ€˜π‘…)}) = 𝐡)
65eqcomd 2730 . . 3 (𝑅 ∈ Ring β†’ 𝐡 = ((RSpanβ€˜π‘…)β€˜{(1rβ€˜π‘…)}))
7 sneq 4631 . . . . 5 (𝑔 = (1rβ€˜π‘…) β†’ {𝑔} = {(1rβ€˜π‘…)})
87fveq2d 6886 . . . 4 (𝑔 = (1rβ€˜π‘…) β†’ ((RSpanβ€˜π‘…)β€˜{𝑔}) = ((RSpanβ€˜π‘…)β€˜{(1rβ€˜π‘…)}))
98rspceeqv 3626 . . 3 (((1rβ€˜π‘…) ∈ 𝐡 ∧ 𝐡 = ((RSpanβ€˜π‘…)β€˜{(1rβ€˜π‘…)})) β†’ βˆƒπ‘” ∈ 𝐡 𝐡 = ((RSpanβ€˜π‘…)β€˜{𝑔}))
103, 6, 9syl2anc 583 . 2 (𝑅 ∈ Ring β†’ βˆƒπ‘” ∈ 𝐡 𝐡 = ((RSpanβ€˜π‘…)β€˜{𝑔}))
11 lpival.p . . 3 𝑃 = (LPIdealβ€˜π‘…)
1211, 4, 1islpidl 21170 . 2 (𝑅 ∈ Ring β†’ (𝐡 ∈ 𝑃 ↔ βˆƒπ‘” ∈ 𝐡 𝐡 = ((RSpanβ€˜π‘…)β€˜{𝑔})))
1310, 12mpbird 257 1 (𝑅 ∈ Ring β†’ 𝐡 ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3062  {csn 4621  β€˜cfv 6534  Basecbs 17145  1rcur 20078  Ringcrg 20130  RSpancrsp 21058  LPIdealclpidl 21165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-sca 17214  df-vsca 17215  df-ip 17216  df-0g 17388  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-sbg 18860  df-subg 19042  df-cmn 19694  df-abl 19695  df-mgp 20032  df-rng 20050  df-ur 20079  df-ring 20132  df-subrg 20463  df-lmod 20700  df-lss 20771  df-lsp 20811  df-sra 21013  df-rgmod 21014  df-lidl 21059  df-rsp 21060  df-lpidl 21167
This theorem is referenced by:  drnglpir  21177
  Copyright terms: Public domain W3C validator