Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lpi1 | Structured version Visualization version GIF version |
Description: The unit ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lpival.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
lpi1.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
lpi1 | ⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpi1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2736 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | 1, 2 | ringidcl 19902 | . . 3 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
4 | eqid 2736 | . . . . 5 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
5 | 4, 1, 2 | rsp1 20601 | . . . 4 ⊢ (𝑅 ∈ Ring → ((RSpan‘𝑅)‘{(1r‘𝑅)}) = 𝐵) |
6 | 5 | eqcomd 2742 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐵 = ((RSpan‘𝑅)‘{(1r‘𝑅)})) |
7 | sneq 4583 | . . . . 5 ⊢ (𝑔 = (1r‘𝑅) → {𝑔} = {(1r‘𝑅)}) | |
8 | 7 | fveq2d 6829 | . . . 4 ⊢ (𝑔 = (1r‘𝑅) → ((RSpan‘𝑅)‘{𝑔}) = ((RSpan‘𝑅)‘{(1r‘𝑅)})) |
9 | 8 | rspceeqv 3584 | . . 3 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ 𝐵 = ((RSpan‘𝑅)‘{(1r‘𝑅)})) → ∃𝑔 ∈ 𝐵 𝐵 = ((RSpan‘𝑅)‘{𝑔})) |
10 | 3, 6, 9 | syl2anc 584 | . 2 ⊢ (𝑅 ∈ Ring → ∃𝑔 ∈ 𝐵 𝐵 = ((RSpan‘𝑅)‘{𝑔})) |
11 | lpival.p | . . 3 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
12 | 11, 4, 1 | islpidl 20623 | . 2 ⊢ (𝑅 ∈ Ring → (𝐵 ∈ 𝑃 ↔ ∃𝑔 ∈ 𝐵 𝐵 = ((RSpan‘𝑅)‘{𝑔}))) |
13 | 10, 12 | mpbird 256 | 1 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 {csn 4573 ‘cfv 6479 Basecbs 17009 1rcur 19832 Ringcrg 19878 RSpancrsp 20539 LPIdealclpidl 20618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-ip 17077 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 df-minusg 18677 df-sbg 18678 df-subg 18848 df-mgp 19816 df-ur 19833 df-ring 19880 df-subrg 20127 df-lmod 20231 df-lss 20300 df-lsp 20340 df-sra 20540 df-rgmod 20541 df-lidl 20542 df-rsp 20543 df-lpidl 20620 |
This theorem is referenced by: drnglpir 20630 |
Copyright terms: Public domain | W3C validator |