| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrgngp | Structured version Visualization version GIF version | ||
| Description: A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nrgngp | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (norm‘𝑅) = (norm‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
| 3 | 1, 2 | isnrg 24548 | . 2 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ (norm‘𝑅) ∈ (AbsVal‘𝑅))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6511 AbsValcabv 20717 normcnm 24464 NrmGrpcngp 24465 NrmRingcnrg 24467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-nrg 24473 |
| This theorem is referenced by: nrgdsdi 24553 nrgdsdir 24554 unitnmn0 24556 nminvr 24557 nmdvr 24558 nrgtgp 24560 subrgnrg 24561 nlmngp2 24568 sranlm 24572 nrginvrcnlem 24579 nrginvrcn 24580 cnzh 33958 rezh 33959 qqhcn 33981 qqhucn 33982 rrhcn 33987 rrhf 33988 rrexttps 33996 rrexthaus 33997 |
| Copyright terms: Public domain | W3C validator |