| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrgngp | Structured version Visualization version GIF version | ||
| Description: A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nrgngp | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (norm‘𝑅) = (norm‘𝑅) | |
| 2 | eqid 2730 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
| 3 | 1, 2 | isnrg 24555 | . 2 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ (norm‘𝑅) ∈ (AbsVal‘𝑅))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6514 AbsValcabv 20724 normcnm 24471 NrmGrpcngp 24472 NrmRingcnrg 24474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-nrg 24480 |
| This theorem is referenced by: nrgdsdi 24560 nrgdsdir 24561 unitnmn0 24563 nminvr 24564 nmdvr 24565 nrgtgp 24567 subrgnrg 24568 nlmngp2 24575 sranlm 24579 nrginvrcnlem 24586 nrginvrcn 24587 cnzh 33965 rezh 33966 qqhcn 33988 qqhucn 33989 rrhcn 33994 rrhf 33995 rrexttps 34003 rrexthaus 34004 |
| Copyright terms: Public domain | W3C validator |