![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrgngp | Structured version Visualization version GIF version |
Description: A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nrgngp | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . 3 ⊢ (norm‘𝑅) = (norm‘𝑅) | |
2 | eqid 2799 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
3 | 1, 2 | isnrg 22792 | . 2 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ (norm‘𝑅) ∈ (AbsVal‘𝑅))) |
4 | 3 | simplbi 492 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ‘cfv 6101 AbsValcabv 19134 normcnm 22709 NrmGrpcngp 22710 NrmRingcnrg 22712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-iota 6064 df-fv 6109 df-nrg 22718 |
This theorem is referenced by: nrgdsdi 22797 nrgdsdir 22798 unitnmn0 22800 nminvr 22801 nmdvr 22802 nrgtgp 22804 subrgnrg 22805 nlmngp2 22812 sranlm 22816 nrginvrcnlem 22823 nrginvrcn 22824 cnzh 30530 rezh 30531 qqhcn 30551 qqhucn 30552 rrhcn 30557 rrhf 30558 rrexttps 30566 rrexthaus 30567 |
Copyright terms: Public domain | W3C validator |