Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrgngp | Structured version Visualization version GIF version |
Description: A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nrgngp | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (norm‘𝑅) = (norm‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
3 | 1, 2 | isnrg 23730 | . 2 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ (norm‘𝑅) ∈ (AbsVal‘𝑅))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 AbsValcabv 19991 normcnm 23638 NrmGrpcngp 23639 NrmRingcnrg 23641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-nrg 23647 |
This theorem is referenced by: nrgdsdi 23735 nrgdsdir 23736 unitnmn0 23738 nminvr 23739 nmdvr 23740 nrgtgp 23742 subrgnrg 23743 nlmngp2 23750 sranlm 23754 nrginvrcnlem 23761 nrginvrcn 23762 cnzh 31820 rezh 31821 qqhcn 31841 qqhucn 31842 rrhcn 31847 rrhf 31848 rrexttps 31856 rrexthaus 31857 |
Copyright terms: Public domain | W3C validator |