![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrgngp | Structured version Visualization version GIF version |
Description: A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nrgngp | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (norm‘𝑅) = (norm‘𝑅) | |
2 | eqid 2728 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
3 | 1, 2 | isnrg 24571 | . 2 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ (norm‘𝑅) ∈ (AbsVal‘𝑅))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ‘cfv 6543 AbsValcabv 20690 normcnm 24479 NrmGrpcngp 24480 NrmRingcnrg 24482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-iota 6495 df-fv 6551 df-nrg 24488 |
This theorem is referenced by: nrgdsdi 24576 nrgdsdir 24577 unitnmn0 24579 nminvr 24580 nmdvr 24581 nrgtgp 24583 subrgnrg 24584 nlmngp2 24591 sranlm 24595 nrginvrcnlem 24602 nrginvrcn 24603 cnzh 33566 rezh 33567 qqhcn 33587 qqhucn 33588 rrhcn 33593 rrhf 33594 rrexttps 33602 rrexthaus 33603 |
Copyright terms: Public domain | W3C validator |