![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrgngp | Structured version Visualization version GIF version |
Description: A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nrgngp | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (norm‘𝑅) = (norm‘𝑅) | |
2 | eqid 2740 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
3 | 1, 2 | isnrg 24702 | . 2 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ (norm‘𝑅) ∈ (AbsVal‘𝑅))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6573 AbsValcabv 20831 normcnm 24610 NrmGrpcngp 24611 NrmRingcnrg 24613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-nrg 24619 |
This theorem is referenced by: nrgdsdi 24707 nrgdsdir 24708 unitnmn0 24710 nminvr 24711 nmdvr 24712 nrgtgp 24714 subrgnrg 24715 nlmngp2 24722 sranlm 24726 nrginvrcnlem 24733 nrginvrcn 24734 cnzh 33916 rezh 33917 qqhcn 33937 qqhucn 33938 rrhcn 33943 rrhf 33944 rrexttps 33952 rrexthaus 33953 |
Copyright terms: Public domain | W3C validator |