Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrgngp | Structured version Visualization version GIF version |
Description: A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nrgngp | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (norm‘𝑅) = (norm‘𝑅) | |
2 | eqid 2740 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
3 | 1, 2 | isnrg 23835 | . 2 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ (norm‘𝑅) ∈ (AbsVal‘𝑅))) |
4 | 3 | simplbi 498 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ‘cfv 6432 AbsValcabv 20087 normcnm 23743 NrmGrpcngp 23744 NrmRingcnrg 23746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-iota 6390 df-fv 6440 df-nrg 23752 |
This theorem is referenced by: nrgdsdi 23840 nrgdsdir 23841 unitnmn0 23843 nminvr 23844 nmdvr 23845 nrgtgp 23847 subrgnrg 23848 nlmngp2 23855 sranlm 23859 nrginvrcnlem 23866 nrginvrcn 23867 cnzh 31929 rezh 31930 qqhcn 31950 qqhucn 31951 rrhcn 31956 rrhf 31957 rrexttps 31965 rrexthaus 31966 |
Copyright terms: Public domain | W3C validator |