Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgnrg | Structured version Visualization version GIF version |
Description: A normed ring restricted to a subring is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
subrgnrg.h | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
Ref | Expression |
---|---|
subrgnrg | ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐻 ∈ NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrgngp 23898 | . . 3 ⊢ (𝐺 ∈ NrmRing → 𝐺 ∈ NrmGrp) | |
2 | subrgsubg 20102 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝐺) → 𝐴 ∈ (SubGrp‘𝐺)) | |
3 | subrgnrg.h | . . . 4 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
4 | 3 | subgngp 23863 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp) |
5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐻 ∈ NrmGrp) |
6 | 2 | adantl 482 | . . . 4 ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐴 ∈ (SubGrp‘𝐺)) |
7 | eqid 2737 | . . . . 5 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
8 | eqid 2737 | . . . . 5 ⊢ (norm‘𝐻) = (norm‘𝐻) | |
9 | 3, 7, 8 | subgnm 23861 | . . . 4 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (norm‘𝐻) = ((norm‘𝐺) ↾ 𝐴)) |
10 | 6, 9 | syl 17 | . . 3 ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → (norm‘𝐻) = ((norm‘𝐺) ↾ 𝐴)) |
11 | eqid 2737 | . . . . 5 ⊢ (AbsVal‘𝐺) = (AbsVal‘𝐺) | |
12 | 7, 11 | nrgabv 23897 | . . . 4 ⊢ (𝐺 ∈ NrmRing → (norm‘𝐺) ∈ (AbsVal‘𝐺)) |
13 | eqid 2737 | . . . . 5 ⊢ (AbsVal‘𝐻) = (AbsVal‘𝐻) | |
14 | 11, 3, 13 | abvres 20171 | . . . 4 ⊢ (((norm‘𝐺) ∈ (AbsVal‘𝐺) ∧ 𝐴 ∈ (SubRing‘𝐺)) → ((norm‘𝐺) ↾ 𝐴) ∈ (AbsVal‘𝐻)) |
15 | 12, 14 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → ((norm‘𝐺) ↾ 𝐴) ∈ (AbsVal‘𝐻)) |
16 | 10, 15 | eqeltrd 2838 | . 2 ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → (norm‘𝐻) ∈ (AbsVal‘𝐻)) |
17 | 8, 13 | isnrg 23896 | . 2 ⊢ (𝐻 ∈ NrmRing ↔ (𝐻 ∈ NrmGrp ∧ (norm‘𝐻) ∈ (AbsVal‘𝐻))) |
18 | 5, 16, 17 | sylanbrc 583 | 1 ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐻 ∈ NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ↾ cres 5609 ‘cfv 6465 (class class class)co 7315 ↾s cress 17011 SubGrpcsubg 18818 SubRingcsubrg 20092 AbsValcabv 20148 normcnm 23804 NrmGrpcngp 23805 NrmRingcnrg 23807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-map 8665 df-en 8782 df-dom 8783 df-sdom 8784 df-sup 9271 df-inf 9272 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-z 12393 df-dec 12511 df-uz 12656 df-q 12762 df-rp 12804 df-xneg 12921 df-xadd 12922 df-xmul 12923 df-ico 13158 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-tset 17051 df-ds 17054 df-rest 17203 df-topn 17204 df-0g 17222 df-topgen 17224 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-grp 18649 df-minusg 18650 df-sbg 18651 df-subg 18821 df-mgp 19789 df-ring 19853 df-subrg 20094 df-abv 20149 df-psmet 20661 df-xmet 20662 df-met 20663 df-bl 20664 df-mopn 20665 df-top 22115 df-topon 22132 df-topsp 22154 df-bases 22168 df-xms 23545 df-ms 23546 df-nm 23810 df-ngp 23811 df-nrg 23813 |
This theorem is referenced by: sranlm 23920 zringnrg 24023 isncvsngp 24385 tcphcph 24473 rezh 32027 rerrext 32065 |
Copyright terms: Public domain | W3C validator |