| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgnrg | Structured version Visualization version GIF version | ||
| Description: A normed ring restricted to a subring is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| subrgnrg.h | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| Ref | Expression |
|---|---|
| subrgnrg | ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐻 ∈ NrmRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrgngp 24566 | . . 3 ⊢ (𝐺 ∈ NrmRing → 𝐺 ∈ NrmGrp) | |
| 2 | subrgsubg 20480 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝐺) → 𝐴 ∈ (SubGrp‘𝐺)) | |
| 3 | subrgnrg.h | . . . 4 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 4 | 3 | subgngp 24539 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp) |
| 5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐻 ∈ NrmGrp) |
| 6 | 2 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐴 ∈ (SubGrp‘𝐺)) |
| 7 | eqid 2729 | . . . . 5 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (norm‘𝐻) = (norm‘𝐻) | |
| 9 | 3, 7, 8 | subgnm 24537 | . . . 4 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (norm‘𝐻) = ((norm‘𝐺) ↾ 𝐴)) |
| 10 | 6, 9 | syl 17 | . . 3 ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → (norm‘𝐻) = ((norm‘𝐺) ↾ 𝐴)) |
| 11 | eqid 2729 | . . . . 5 ⊢ (AbsVal‘𝐺) = (AbsVal‘𝐺) | |
| 12 | 7, 11 | nrgabv 24565 | . . . 4 ⊢ (𝐺 ∈ NrmRing → (norm‘𝐺) ∈ (AbsVal‘𝐺)) |
| 13 | eqid 2729 | . . . . 5 ⊢ (AbsVal‘𝐻) = (AbsVal‘𝐻) | |
| 14 | 11, 3, 13 | abvres 20734 | . . . 4 ⊢ (((norm‘𝐺) ∈ (AbsVal‘𝐺) ∧ 𝐴 ∈ (SubRing‘𝐺)) → ((norm‘𝐺) ↾ 𝐴) ∈ (AbsVal‘𝐻)) |
| 15 | 12, 14 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → ((norm‘𝐺) ↾ 𝐴) ∈ (AbsVal‘𝐻)) |
| 16 | 10, 15 | eqeltrd 2828 | . 2 ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → (norm‘𝐻) ∈ (AbsVal‘𝐻)) |
| 17 | 8, 13 | isnrg 24564 | . 2 ⊢ (𝐻 ∈ NrmRing ↔ (𝐻 ∈ NrmGrp ∧ (norm‘𝐻) ∈ (AbsVal‘𝐻))) |
| 18 | 5, 16, 17 | sylanbrc 583 | 1 ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐻 ∈ NrmRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 ↾s cress 17159 SubGrpcsubg 19017 SubRingcsubrg 20472 AbsValcabv 20711 normcnm 24480 NrmGrpcngp 24481 NrmRingcnrg 24483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ico 13272 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-tset 17198 df-ds 17201 df-rest 17344 df-topn 17345 df-0g 17363 df-topgen 17365 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-subrng 20449 df-subrg 20473 df-abv 20712 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-xms 24224 df-ms 24225 df-nm 24486 df-ngp 24487 df-nrg 24489 |
| This theorem is referenced by: sranlm 24588 zringnrg 24692 isncvsngp 25065 tcphcph 25153 rezh 33935 rerrext 33975 |
| Copyright terms: Public domain | W3C validator |