MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgnrg Structured version   Visualization version   GIF version

Theorem subrgnrg 23909
Description: A normed ring restricted to a subring is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
subrgnrg.h 𝐻 = (𝐺s 𝐴)
Assertion
Ref Expression
subrgnrg ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐻 ∈ NrmRing)

Proof of Theorem subrgnrg
StepHypRef Expression
1 nrgngp 23898 . . 3 (𝐺 ∈ NrmRing → 𝐺 ∈ NrmGrp)
2 subrgsubg 20102 . . 3 (𝐴 ∈ (SubRing‘𝐺) → 𝐴 ∈ (SubGrp‘𝐺))
3 subrgnrg.h . . . 4 𝐻 = (𝐺s 𝐴)
43subgngp 23863 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp)
51, 2, 4syl2an 596 . 2 ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐻 ∈ NrmGrp)
62adantl 482 . . . 4 ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐴 ∈ (SubGrp‘𝐺))
7 eqid 2737 . . . . 5 (norm‘𝐺) = (norm‘𝐺)
8 eqid 2737 . . . . 5 (norm‘𝐻) = (norm‘𝐻)
93, 7, 8subgnm 23861 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) → (norm‘𝐻) = ((norm‘𝐺) ↾ 𝐴))
106, 9syl 17 . . 3 ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → (norm‘𝐻) = ((norm‘𝐺) ↾ 𝐴))
11 eqid 2737 . . . . 5 (AbsVal‘𝐺) = (AbsVal‘𝐺)
127, 11nrgabv 23897 . . . 4 (𝐺 ∈ NrmRing → (norm‘𝐺) ∈ (AbsVal‘𝐺))
13 eqid 2737 . . . . 5 (AbsVal‘𝐻) = (AbsVal‘𝐻)
1411, 3, 13abvres 20171 . . . 4 (((norm‘𝐺) ∈ (AbsVal‘𝐺) ∧ 𝐴 ∈ (SubRing‘𝐺)) → ((norm‘𝐺) ↾ 𝐴) ∈ (AbsVal‘𝐻))
1512, 14sylan 580 . . 3 ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → ((norm‘𝐺) ↾ 𝐴) ∈ (AbsVal‘𝐻))
1610, 15eqeltrd 2838 . 2 ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → (norm‘𝐻) ∈ (AbsVal‘𝐻))
178, 13isnrg 23896 . 2 (𝐻 ∈ NrmRing ↔ (𝐻 ∈ NrmGrp ∧ (norm‘𝐻) ∈ (AbsVal‘𝐻)))
185, 16, 17sylanbrc 583 1 ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐻 ∈ NrmRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cres 5609  cfv 6465  (class class class)co 7315  s cress 17011  SubGrpcsubg 18818  SubRingcsubrg 20092  AbsValcabv 20148  normcnm 23804  NrmGrpcngp 23805  NrmRingcnrg 23807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021  ax-pre-sup 11022
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-1st 7876  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-er 8546  df-map 8665  df-en 8782  df-dom 8783  df-sdom 8784  df-sup 9271  df-inf 9272  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-div 11706  df-nn 12047  df-2 12109  df-3 12110  df-4 12111  df-5 12112  df-6 12113  df-7 12114  df-8 12115  df-9 12116  df-n0 12307  df-z 12393  df-dec 12511  df-uz 12656  df-q 12762  df-rp 12804  df-xneg 12921  df-xadd 12922  df-xmul 12923  df-ico 13158  df-sets 16935  df-slot 16953  df-ndx 16965  df-base 16983  df-ress 17012  df-plusg 17045  df-mulr 17046  df-tset 17051  df-ds 17054  df-rest 17203  df-topn 17204  df-0g 17222  df-topgen 17224  df-mgm 18396  df-sgrp 18445  df-mnd 18456  df-grp 18649  df-minusg 18650  df-sbg 18651  df-subg 18821  df-mgp 19789  df-ring 19853  df-subrg 20094  df-abv 20149  df-psmet 20661  df-xmet 20662  df-met 20663  df-bl 20664  df-mopn 20665  df-top 22115  df-topon 22132  df-topsp 22154  df-bases 22168  df-xms 23545  df-ms 23546  df-nm 23810  df-ngp 23811  df-nrg 23813
This theorem is referenced by:  sranlm  23920  zringnrg  24023  isncvsngp  24385  tcphcph  24473  rezh  32027  rerrext  32065
  Copyright terms: Public domain W3C validator