MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgnrg Structured version   Visualization version   GIF version

Theorem subrgnrg 23276
Description: A normed ring restricted to a subring is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
subrgnrg.h 𝐻 = (𝐺s 𝐴)
Assertion
Ref Expression
subrgnrg ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐻 ∈ NrmRing)

Proof of Theorem subrgnrg
StepHypRef Expression
1 nrgngp 23265 . . 3 (𝐺 ∈ NrmRing → 𝐺 ∈ NrmGrp)
2 subrgsubg 19535 . . 3 (𝐴 ∈ (SubRing‘𝐺) → 𝐴 ∈ (SubGrp‘𝐺))
3 subrgnrg.h . . . 4 𝐻 = (𝐺s 𝐴)
43subgngp 23238 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp)
51, 2, 4syl2an 597 . 2 ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐻 ∈ NrmGrp)
62adantl 484 . . . 4 ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐴 ∈ (SubGrp‘𝐺))
7 eqid 2821 . . . . 5 (norm‘𝐺) = (norm‘𝐺)
8 eqid 2821 . . . . 5 (norm‘𝐻) = (norm‘𝐻)
93, 7, 8subgnm 23236 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) → (norm‘𝐻) = ((norm‘𝐺) ↾ 𝐴))
106, 9syl 17 . . 3 ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → (norm‘𝐻) = ((norm‘𝐺) ↾ 𝐴))
11 eqid 2821 . . . . 5 (AbsVal‘𝐺) = (AbsVal‘𝐺)
127, 11nrgabv 23264 . . . 4 (𝐺 ∈ NrmRing → (norm‘𝐺) ∈ (AbsVal‘𝐺))
13 eqid 2821 . . . . 5 (AbsVal‘𝐻) = (AbsVal‘𝐻)
1411, 3, 13abvres 19604 . . . 4 (((norm‘𝐺) ∈ (AbsVal‘𝐺) ∧ 𝐴 ∈ (SubRing‘𝐺)) → ((norm‘𝐺) ↾ 𝐴) ∈ (AbsVal‘𝐻))
1512, 14sylan 582 . . 3 ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → ((norm‘𝐺) ↾ 𝐴) ∈ (AbsVal‘𝐻))
1610, 15eqeltrd 2913 . 2 ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → (norm‘𝐻) ∈ (AbsVal‘𝐻))
178, 13isnrg 23263 . 2 (𝐻 ∈ NrmRing ↔ (𝐻 ∈ NrmGrp ∧ (norm‘𝐻) ∈ (AbsVal‘𝐻)))
185, 16, 17sylanbrc 585 1 ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐻 ∈ NrmRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cres 5551  cfv 6349  (class class class)co 7150  s cress 16478  SubGrpcsubg 18267  SubRingcsubrg 19525  AbsValcabv 19581  normcnm 23180  NrmGrpcngp 23181  NrmRingcnrg 23183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ico 12738  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-tset 16578  df-ds 16581  df-rest 16690  df-topn 16691  df-0g 16709  df-topgen 16711  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-mgp 19234  df-ring 19293  df-subrg 19527  df-abv 19582  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-xms 22924  df-ms 22925  df-nm 23186  df-ngp 23187  df-nrg 23189
This theorem is referenced by:  sranlm  23287  zringnrg  23390  isncvsngp  23747  tcphcph  23834  rezh  31207  rerrext  31245
  Copyright terms: Public domain W3C validator