MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgabv Structured version   Visualization version   GIF version

Theorem nrgabv 24582
Description: The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnrg.1 𝑁 = (norm‘𝑅)
isnrg.2 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
nrgabv (𝑅 ∈ NrmRing → 𝑁𝐴)

Proof of Theorem nrgabv
StepHypRef Expression
1 isnrg.1 . . 3 𝑁 = (norm‘𝑅)
2 isnrg.2 . . 3 𝐴 = (AbsVal‘𝑅)
31, 2isnrg 24581 . 2 (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁𝐴))
43simprbi 496 1 (𝑅 ∈ NrmRing → 𝑁𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6499  AbsValcabv 20728  normcnm 24497  NrmGrpcngp 24498  NrmRingcnrg 24500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-nrg 24506
This theorem is referenced by:  nrgring  24584  nmmul  24585  nm1  24588  nrgdomn  24592  subrgnrg  24594  sranlm  24605
  Copyright terms: Public domain W3C validator