MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgabv Structured version   Visualization version   GIF version

Theorem nrgabv 24576
Description: The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnrg.1 𝑁 = (norm‘𝑅)
isnrg.2 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
nrgabv (𝑅 ∈ NrmRing → 𝑁𝐴)

Proof of Theorem nrgabv
StepHypRef Expression
1 isnrg.1 . . 3 𝑁 = (norm‘𝑅)
2 isnrg.2 . . 3 𝐴 = (AbsVal‘𝑅)
31, 2isnrg 24575 . 2 (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁𝐴))
43simprbi 496 1 (𝑅 ∈ NrmRing → 𝑁𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  AbsValcabv 20723  normcnm 24491  NrmGrpcngp 24492  NrmRingcnrg 24494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-nrg 24500
This theorem is referenced by:  nrgring  24578  nmmul  24579  nm1  24582  nrgdomn  24586  subrgnrg  24588  sranlm  24599
  Copyright terms: Public domain W3C validator