![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrgabv | Structured version Visualization version GIF version |
Description: The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnrg.1 | ⊢ 𝑁 = (norm‘𝑅) |
isnrg.2 | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
nrgabv | ⊢ (𝑅 ∈ NrmRing → 𝑁 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnrg.1 | . . 3 ⊢ 𝑁 = (norm‘𝑅) | |
2 | isnrg.2 | . . 3 ⊢ 𝐴 = (AbsVal‘𝑅) | |
3 | 1, 2 | isnrg 22841 | . 2 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴)) |
4 | 3 | simprbi 492 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑁 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 ‘cfv 6127 AbsValcabv 19179 normcnm 22758 NrmGrpcngp 22759 NrmRingcnrg 22761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-iota 6090 df-fv 6135 df-nrg 22767 |
This theorem is referenced by: nrgring 22844 nmmul 22845 nm1 22848 nrgdomn 22852 subrgnrg 22854 sranlm 22865 |
Copyright terms: Public domain | W3C validator |