Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrgabv | Structured version Visualization version GIF version |
Description: The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnrg.1 | ⊢ 𝑁 = (norm‘𝑅) |
isnrg.2 | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
nrgabv | ⊢ (𝑅 ∈ NrmRing → 𝑁 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnrg.1 | . . 3 ⊢ 𝑁 = (norm‘𝑅) | |
2 | isnrg.2 | . . 3 ⊢ 𝐴 = (AbsVal‘𝑅) | |
3 | 1, 2 | isnrg 23824 | . 2 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴)) |
4 | 3 | simprbi 497 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑁 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 AbsValcabv 20076 normcnm 23732 NrmGrpcngp 23733 NrmRingcnrg 23735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-nrg 23741 |
This theorem is referenced by: nrgring 23827 nmmul 23828 nm1 23831 nrgdomn 23835 subrgnrg 23837 sranlm 23848 |
Copyright terms: Public domain | W3C validator |