MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgabv Structured version   Visualization version   GIF version

Theorem nrgabv 23825
Description: The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnrg.1 𝑁 = (norm‘𝑅)
isnrg.2 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
nrgabv (𝑅 ∈ NrmRing → 𝑁𝐴)

Proof of Theorem nrgabv
StepHypRef Expression
1 isnrg.1 . . 3 𝑁 = (norm‘𝑅)
2 isnrg.2 . . 3 𝐴 = (AbsVal‘𝑅)
31, 2isnrg 23824 . 2 (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁𝐴))
43simprbi 497 1 (𝑅 ∈ NrmRing → 𝑁𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  AbsValcabv 20076  normcnm 23732  NrmGrpcngp 23733  NrmRingcnrg 23735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-nrg 23741
This theorem is referenced by:  nrgring  23827  nmmul  23828  nm1  23831  nrgdomn  23835  subrgnrg  23837  sranlm  23848
  Copyright terms: Public domain W3C validator