Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrgabv | Structured version Visualization version GIF version |
Description: The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnrg.1 | ⊢ 𝑁 = (norm‘𝑅) |
isnrg.2 | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
nrgabv | ⊢ (𝑅 ∈ NrmRing → 𝑁 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnrg.1 | . . 3 ⊢ 𝑁 = (norm‘𝑅) | |
2 | isnrg.2 | . . 3 ⊢ 𝐴 = (AbsVal‘𝑅) | |
3 | 1, 2 | isnrg 23730 | . 2 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴)) |
4 | 3 | simprbi 496 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑁 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 AbsValcabv 19991 normcnm 23638 NrmGrpcngp 23639 NrmRingcnrg 23641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-nrg 23647 |
This theorem is referenced by: nrgring 23733 nmmul 23734 nm1 23737 nrgdomn 23741 subrgnrg 23743 sranlm 23754 |
Copyright terms: Public domain | W3C validator |