![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrgabv | Structured version Visualization version GIF version |
Description: The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnrg.1 | ⊢ 𝑁 = (norm‘𝑅) |
isnrg.2 | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
nrgabv | ⊢ (𝑅 ∈ NrmRing → 𝑁 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnrg.1 | . . 3 ⊢ 𝑁 = (norm‘𝑅) | |
2 | isnrg.2 | . . 3 ⊢ 𝐴 = (AbsVal‘𝑅) | |
3 | 1, 2 | isnrg 24702 | . 2 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴)) |
4 | 3 | simprbi 496 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑁 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 AbsValcabv 20831 normcnm 24610 NrmGrpcngp 24611 NrmRingcnrg 24613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-nrg 24619 |
This theorem is referenced by: nrgring 24705 nmmul 24706 nm1 24709 nrgdomn 24713 subrgnrg 24715 sranlm 24726 |
Copyright terms: Public domain | W3C validator |