MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgabv Structured version   Visualization version   GIF version

Theorem nrgabv 24178
Description: The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnrg.1 𝑁 = (normβ€˜π‘…)
isnrg.2 𝐴 = (AbsValβ€˜π‘…)
Assertion
Ref Expression
nrgabv (𝑅 ∈ NrmRing β†’ 𝑁 ∈ 𝐴)

Proof of Theorem nrgabv
StepHypRef Expression
1 isnrg.1 . . 3 𝑁 = (normβ€˜π‘…)
2 isnrg.2 . . 3 𝐴 = (AbsValβ€˜π‘…)
31, 2isnrg 24177 . 2 (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴))
43simprbi 498 1 (𝑅 ∈ NrmRing β†’ 𝑁 ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  β€˜cfv 6544  AbsValcabv 20424  normcnm 24085  NrmGrpcngp 24086  NrmRingcnrg 24088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-nrg 24094
This theorem is referenced by:  nrgring  24180  nmmul  24181  nm1  24184  nrgdomn  24188  subrgnrg  24190  sranlm  24201
  Copyright terms: Public domain W3C validator