MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgabv Structured version   Visualization version   GIF version

Theorem nrgabv 24703
Description: The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnrg.1 𝑁 = (norm‘𝑅)
isnrg.2 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
nrgabv (𝑅 ∈ NrmRing → 𝑁𝐴)

Proof of Theorem nrgabv
StepHypRef Expression
1 isnrg.1 . . 3 𝑁 = (norm‘𝑅)
2 isnrg.2 . . 3 𝐴 = (AbsVal‘𝑅)
31, 2isnrg 24702 . 2 (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁𝐴))
43simprbi 496 1 (𝑅 ∈ NrmRing → 𝑁𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  AbsValcabv 20831  normcnm 24610  NrmGrpcngp 24611  NrmRingcnrg 24613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-nrg 24619
This theorem is referenced by:  nrgring  24705  nmmul  24706  nm1  24709  nrgdomn  24713  subrgnrg  24715  sranlm  24726
  Copyright terms: Public domain W3C validator