![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zhmnrg | Structured version Visualization version GIF version |
Description: The ℤ-module built from a normed ring is also a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
Ref | Expression |
---|---|
zlmlem2.1 | ⊢ 𝑊 = (ℤMod‘𝐺) |
Ref | Expression |
---|---|
zhmnrg | ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2797 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝐺)) |
3 | zlmlem2.1 | . . . . . . . . 9 ⊢ 𝑊 = (ℤMod‘𝐺) | |
4 | 3, 1 | zlmbas 20351 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝑊) |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝑊)) |
6 | eqid 2797 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
7 | 3, 6 | zlmplusg 20352 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝑊) |
8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (+g‘𝐺) = (+g‘𝑊)) |
9 | 8 | oveqdr 7051 | . . . . . . 7 ⊢ ((𝐺 ∈ NrmRing ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝑊)𝑦)) |
10 | 2, 5, 9 | grppropd 17880 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ Grp ↔ 𝑊 ∈ Grp)) |
11 | eqid 2797 | . . . . . . . . 9 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
12 | 3, 11 | zlmds 30818 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (dist‘𝐺) = (dist‘𝑊)) |
13 | 12 | reseq1d 5740 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝑊) ↾ ((Base‘𝐺) × (Base‘𝐺)))) |
14 | eqid 2797 | . . . . . . . . 9 ⊢ (TopSet‘𝐺) = (TopSet‘𝐺) | |
15 | 3, 14 | zlmtset 30819 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (TopSet‘𝐺) = (TopSet‘𝑊)) |
16 | 5, 15 | topnpropd 16543 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (TopOpen‘𝐺) = (TopOpen‘𝑊)) |
17 | 2, 5, 13, 16 | mspropd 22771 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ MetSp ↔ 𝑊 ∈ MetSp)) |
18 | eqid 2797 | . . . . . . . . 9 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
19 | 3, 18 | zlmnm 30820 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (norm‘𝐺) = (norm‘𝑊)) |
20 | 5, 8 | grpsubpropd 17965 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (-g‘𝐺) = (-g‘𝑊)) |
21 | 19, 20 | coeq12d 5628 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∘ (-g‘𝐺)) = ((norm‘𝑊) ∘ (-g‘𝑊))) |
22 | 21, 12 | sseq12d 3927 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺) ↔ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
23 | 10, 17, 22 | 3anbi123d 1428 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺)) ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊)))) |
24 | eqid 2797 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
25 | 18, 24, 11 | isngp 22892 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
26 | eqid 2797 | . . . . . 6 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
27 | eqid 2797 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
28 | eqid 2797 | . . . . . 6 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
29 | 26, 27, 28 | isngp 22892 | . . . . 5 ⊢ (𝑊 ∈ NrmGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
30 | 23, 25, 29 | 3bitr4g 315 | . . . 4 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmGrp ↔ 𝑊 ∈ NrmGrp)) |
31 | eqid 2797 | . . . . . . . 8 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
32 | 3, 31 | zlmmulr 20353 | . . . . . . 7 ⊢ (.r‘𝐺) = (.r‘𝑊) |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (.r‘𝐺) = (.r‘𝑊)) |
34 | 5, 8, 33 | abvpropd2 30309 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → (AbsVal‘𝐺) = (AbsVal‘𝑊)) |
35 | 19, 34 | eleq12d 2879 | . . . 4 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∈ (AbsVal‘𝐺) ↔ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
36 | 30, 35 | anbi12d 630 | . . 3 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺)) ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊)))) |
37 | eqid 2797 | . . . 4 ⊢ (AbsVal‘𝐺) = (AbsVal‘𝐺) | |
38 | 18, 37 | isnrg 22956 | . . 3 ⊢ (𝐺 ∈ NrmRing ↔ (𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺))) |
39 | eqid 2797 | . . . 4 ⊢ (AbsVal‘𝑊) = (AbsVal‘𝑊) | |
40 | 26, 39 | isnrg 22956 | . . 3 ⊢ (𝑊 ∈ NrmRing ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
41 | 36, 38, 40 | 3bitr4g 315 | . 2 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmRing ↔ 𝑊 ∈ NrmRing)) |
42 | 41 | ibi 268 | 1 ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ⊆ wss 3865 × cxp 5448 ∘ ccom 5454 ‘cfv 6232 Basecbs 16316 +gcplusg 16398 .rcmulr 16399 TopSetcts 16404 distcds 16407 Grpcgrp 17865 -gcsg 17867 AbsValcabv 19281 ℤModczlm 20334 MetSpcms 22615 normcnm 22873 NrmGrpcngp 22874 NrmRingcnrg 22876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-map 8265 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-z 11836 df-dec 11953 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-plusg 16411 df-mulr 16412 df-sca 16414 df-vsca 16415 df-tset 16417 df-ds 16420 df-rest 16529 df-topn 16530 df-0g 16548 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-grp 17868 df-minusg 17869 df-sbg 17870 df-mgp 18934 df-ring 18993 df-abv 19282 df-zlm 20338 df-top 21190 df-topon 21207 df-topsp 21229 df-xms 22617 df-ms 22618 df-nm 22879 df-ngp 22880 df-nrg 22882 |
This theorem is referenced by: cnzh 30824 rezh 30825 qqhnm 30844 |
Copyright terms: Public domain | W3C validator |