Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zhmnrg Structured version   Visualization version   GIF version

Theorem zhmnrg 31896
Description: The -module built from a normed ring is also a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypothesis
Ref Expression
zlmlem2.1 𝑊 = (ℤMod‘𝐺)
Assertion
Ref Expression
zhmnrg (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing)

Proof of Theorem zhmnrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
21a1i 11 . . . . . . 7 (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝐺))
3 zlmlem2.1 . . . . . . . . 9 𝑊 = (ℤMod‘𝐺)
43, 1zlmbas 20701 . . . . . . . 8 (Base‘𝐺) = (Base‘𝑊)
54a1i 11 . . . . . . 7 (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝑊))
6 eqid 2739 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
73, 6zlmplusg 20703 . . . . . . . . 9 (+g𝐺) = (+g𝑊)
87a1i 11 . . . . . . . 8 (𝐺 ∈ NrmRing → (+g𝐺) = (+g𝑊))
98oveqdr 7296 . . . . . . 7 ((𝐺 ∈ NrmRing ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑊)𝑦))
102, 5, 9grppropd 18575 . . . . . 6 (𝐺 ∈ NrmRing → (𝐺 ∈ Grp ↔ 𝑊 ∈ Grp))
11 eqid 2739 . . . . . . . . 9 (dist‘𝐺) = (dist‘𝐺)
123, 11zlmds 31891 . . . . . . . 8 (𝐺 ∈ NrmRing → (dist‘𝐺) = (dist‘𝑊))
1312reseq1d 5887 . . . . . . 7 (𝐺 ∈ NrmRing → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝑊) ↾ ((Base‘𝐺) × (Base‘𝐺))))
14 eqid 2739 . . . . . . . . 9 (TopSet‘𝐺) = (TopSet‘𝐺)
153, 14zlmtset 31893 . . . . . . . 8 (𝐺 ∈ NrmRing → (TopSet‘𝐺) = (TopSet‘𝑊))
165, 15topnpropd 17128 . . . . . . 7 (𝐺 ∈ NrmRing → (TopOpen‘𝐺) = (TopOpen‘𝑊))
172, 5, 13, 16mspropd 23608 . . . . . 6 (𝐺 ∈ NrmRing → (𝐺 ∈ MetSp ↔ 𝑊 ∈ MetSp))
18 eqid 2739 . . . . . . . . 9 (norm‘𝐺) = (norm‘𝐺)
193, 18zlmnm 31895 . . . . . . . 8 (𝐺 ∈ NrmRing → (norm‘𝐺) = (norm‘𝑊))
205, 8grpsubpropd 18661 . . . . . . . 8 (𝐺 ∈ NrmRing → (-g𝐺) = (-g𝑊))
2119, 20coeq12d 5770 . . . . . . 7 (𝐺 ∈ NrmRing → ((norm‘𝐺) ∘ (-g𝐺)) = ((norm‘𝑊) ∘ (-g𝑊)))
2221, 12sseq12d 3958 . . . . . 6 (𝐺 ∈ NrmRing → (((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺) ↔ ((norm‘𝑊) ∘ (-g𝑊)) ⊆ (dist‘𝑊)))
2310, 17, 223anbi123d 1434 . . . . 5 (𝐺 ∈ NrmRing → ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺)) ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g𝑊)) ⊆ (dist‘𝑊))))
24 eqid 2739 . . . . . 6 (-g𝐺) = (-g𝐺)
2518, 24, 11isngp 23733 . . . . 5 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺)))
26 eqid 2739 . . . . . 6 (norm‘𝑊) = (norm‘𝑊)
27 eqid 2739 . . . . . 6 (-g𝑊) = (-g𝑊)
28 eqid 2739 . . . . . 6 (dist‘𝑊) = (dist‘𝑊)
2926, 27, 28isngp 23733 . . . . 5 (𝑊 ∈ NrmGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g𝑊)) ⊆ (dist‘𝑊)))
3023, 25, 293bitr4g 313 . . . 4 (𝐺 ∈ NrmRing → (𝐺 ∈ NrmGrp ↔ 𝑊 ∈ NrmGrp))
31 eqid 2739 . . . . . . . 8 (.r𝐺) = (.r𝐺)
323, 31zlmmulr 20705 . . . . . . 7 (.r𝐺) = (.r𝑊)
3332a1i 11 . . . . . 6 (𝐺 ∈ NrmRing → (.r𝐺) = (.r𝑊))
345, 8, 33abvpropd2 31216 . . . . 5 (𝐺 ∈ NrmRing → (AbsVal‘𝐺) = (AbsVal‘𝑊))
3519, 34eleq12d 2834 . . . 4 (𝐺 ∈ NrmRing → ((norm‘𝐺) ∈ (AbsVal‘𝐺) ↔ (norm‘𝑊) ∈ (AbsVal‘𝑊)))
3630, 35anbi12d 630 . . 3 (𝐺 ∈ NrmRing → ((𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺)) ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊))))
37 eqid 2739 . . . 4 (AbsVal‘𝐺) = (AbsVal‘𝐺)
3818, 37isnrg 23805 . . 3 (𝐺 ∈ NrmRing ↔ (𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺)))
39 eqid 2739 . . . 4 (AbsVal‘𝑊) = (AbsVal‘𝑊)
4026, 39isnrg 23805 . . 3 (𝑊 ∈ NrmRing ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊)))
4136, 38, 403bitr4g 313 . 2 (𝐺 ∈ NrmRing → (𝐺 ∈ NrmRing ↔ 𝑊 ∈ NrmRing))
4241ibi 266 1 (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  wss 3891   × cxp 5586  ccom 5592  cfv 6430  Basecbs 16893  +gcplusg 16943  .rcmulr 16944  TopSetcts 16949  distcds 16952  Grpcgrp 18558  -gcsg 18560  AbsValcabv 20057  ℤModczlm 20683  MetSpcms 23452  normcnm 23713  NrmGrpcngp 23714  NrmRingcnrg 23716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-mulr 16957  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ds 16965  df-rest 17114  df-topn 17115  df-0g 17133  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-grp 18561  df-minusg 18562  df-sbg 18563  df-mgp 19702  df-ring 19766  df-abv 20058  df-zlm 20687  df-top 22024  df-topon 22041  df-topsp 22063  df-xms 23454  df-ms 23455  df-nm 23719  df-ngp 23720  df-nrg 23722
This theorem is referenced by:  cnzh  31899  rezh  31900  qqhnm  31919
  Copyright terms: Public domain W3C validator