![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zhmnrg | Structured version Visualization version GIF version |
Description: The ℤ-module built from a normed ring is also a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
Ref | Expression |
---|---|
zlmlem2.1 | ⊢ 𝑊 = (ℤMod‘𝐺) |
Ref | Expression |
---|---|
zhmnrg | ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝐺)) |
3 | zlmlem2.1 | . . . . . . . . 9 ⊢ 𝑊 = (ℤMod‘𝐺) | |
4 | 3, 1 | zlmbas 21556 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝑊) |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝑊)) |
6 | eqid 2737 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
7 | 3, 6 | zlmplusg 21558 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝑊) |
8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (+g‘𝐺) = (+g‘𝑊)) |
9 | 8 | oveqdr 7466 | . . . . . . 7 ⊢ ((𝐺 ∈ NrmRing ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝑊)𝑦)) |
10 | 2, 5, 9 | grppropd 18991 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ Grp ↔ 𝑊 ∈ Grp)) |
11 | eqid 2737 | . . . . . . . . 9 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
12 | 3, 11 | zlmds 33955 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (dist‘𝐺) = (dist‘𝑊)) |
13 | 12 | reseq1d 6003 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝑊) ↾ ((Base‘𝐺) × (Base‘𝐺)))) |
14 | eqid 2737 | . . . . . . . . 9 ⊢ (TopSet‘𝐺) = (TopSet‘𝐺) | |
15 | 3, 14 | zlmtset 33957 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (TopSet‘𝐺) = (TopSet‘𝑊)) |
16 | 5, 15 | topnpropd 17492 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (TopOpen‘𝐺) = (TopOpen‘𝑊)) |
17 | 2, 5, 13, 16 | mspropd 24509 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ MetSp ↔ 𝑊 ∈ MetSp)) |
18 | eqid 2737 | . . . . . . . . 9 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
19 | 3, 18 | zlmnm 33959 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (norm‘𝐺) = (norm‘𝑊)) |
20 | 5, 8 | grpsubpropd 19085 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (-g‘𝐺) = (-g‘𝑊)) |
21 | 19, 20 | coeq12d 5882 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∘ (-g‘𝐺)) = ((norm‘𝑊) ∘ (-g‘𝑊))) |
22 | 21, 12 | sseq12d 4032 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺) ↔ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
23 | 10, 17, 22 | 3anbi123d 1437 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺)) ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊)))) |
24 | eqid 2737 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
25 | 18, 24, 11 | isngp 24634 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
26 | eqid 2737 | . . . . . 6 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
27 | eqid 2737 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
28 | eqid 2737 | . . . . . 6 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
29 | 26, 27, 28 | isngp 24634 | . . . . 5 ⊢ (𝑊 ∈ NrmGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
30 | 23, 25, 29 | 3bitr4g 314 | . . . 4 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmGrp ↔ 𝑊 ∈ NrmGrp)) |
31 | eqid 2737 | . . . . . . . 8 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
32 | 3, 31 | zlmmulr 21560 | . . . . . . 7 ⊢ (.r‘𝐺) = (.r‘𝑊) |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (.r‘𝐺) = (.r‘𝑊)) |
34 | 5, 8, 33 | abvpropd2 32967 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → (AbsVal‘𝐺) = (AbsVal‘𝑊)) |
35 | 19, 34 | eleq12d 2835 | . . . 4 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∈ (AbsVal‘𝐺) ↔ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
36 | 30, 35 | anbi12d 632 | . . 3 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺)) ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊)))) |
37 | eqid 2737 | . . . 4 ⊢ (AbsVal‘𝐺) = (AbsVal‘𝐺) | |
38 | 18, 37 | isnrg 24706 | . . 3 ⊢ (𝐺 ∈ NrmRing ↔ (𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺))) |
39 | eqid 2737 | . . . 4 ⊢ (AbsVal‘𝑊) = (AbsVal‘𝑊) | |
40 | 26, 39 | isnrg 24706 | . . 3 ⊢ (𝑊 ∈ NrmRing ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
41 | 36, 38, 40 | 3bitr4g 314 | . 2 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmRing ↔ 𝑊 ∈ NrmRing)) |
42 | 41 | ibi 267 | 1 ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ⊆ wss 3966 × cxp 5691 ∘ ccom 5697 ‘cfv 6569 Basecbs 17254 +gcplusg 17307 .rcmulr 17308 TopSetcts 17313 distcds 17316 Grpcgrp 18973 -gcsg 18975 AbsValcabv 20835 ℤModczlm 21538 MetSpcms 24353 normcnm 24614 NrmGrpcngp 24615 NrmRingcnrg 24617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-plusg 17320 df-mulr 17321 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ds 17329 df-rest 17478 df-topn 17479 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mgp 20162 df-ring 20262 df-abv 20836 df-zlm 21542 df-top 22925 df-topon 22942 df-topsp 22964 df-xms 24355 df-ms 24356 df-nm 24620 df-ngp 24621 df-nrg 24623 |
This theorem is referenced by: cnzh 33963 rezh 33964 qqhnm 33985 |
Copyright terms: Public domain | W3C validator |