| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zhmnrg | Structured version Visualization version GIF version | ||
| Description: The ℤ-module built from a normed ring is also a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| Ref | Expression |
|---|---|
| zlmlem2.1 | ⊢ 𝑊 = (ℤMod‘𝐺) |
| Ref | Expression |
|---|---|
| zhmnrg | ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝐺)) |
| 3 | zlmlem2.1 | . . . . . . . . 9 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 4 | 3, 1 | zlmbas 21460 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝑊) |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝑊)) |
| 6 | eqid 2729 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 7 | 3, 6 | zlmplusg 21461 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝑊) |
| 8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (+g‘𝐺) = (+g‘𝑊)) |
| 9 | 8 | oveqdr 7397 | . . . . . . 7 ⊢ ((𝐺 ∈ NrmRing ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝑊)𝑦)) |
| 10 | 2, 5, 9 | grppropd 18866 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ Grp ↔ 𝑊 ∈ Grp)) |
| 11 | eqid 2729 | . . . . . . . . 9 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 12 | 3, 11 | zlmds 33946 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (dist‘𝐺) = (dist‘𝑊)) |
| 13 | 12 | reseq1d 5938 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝑊) ↾ ((Base‘𝐺) × (Base‘𝐺)))) |
| 14 | eqid 2729 | . . . . . . . . 9 ⊢ (TopSet‘𝐺) = (TopSet‘𝐺) | |
| 15 | 3, 14 | zlmtset 33947 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (TopSet‘𝐺) = (TopSet‘𝑊)) |
| 16 | 5, 15 | topnpropd 17376 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (TopOpen‘𝐺) = (TopOpen‘𝑊)) |
| 17 | 2, 5, 13, 16 | mspropd 24396 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ MetSp ↔ 𝑊 ∈ MetSp)) |
| 18 | eqid 2729 | . . . . . . . . 9 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 19 | 3, 18 | zlmnm 33948 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (norm‘𝐺) = (norm‘𝑊)) |
| 20 | 5, 8 | grpsubpropd 18960 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (-g‘𝐺) = (-g‘𝑊)) |
| 21 | 19, 20 | coeq12d 5818 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∘ (-g‘𝐺)) = ((norm‘𝑊) ∘ (-g‘𝑊))) |
| 22 | 21, 12 | sseq12d 3977 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺) ↔ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
| 23 | 10, 17, 22 | 3anbi123d 1438 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺)) ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊)))) |
| 24 | eqid 2729 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 25 | 18, 24, 11 | isngp 24518 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 26 | eqid 2729 | . . . . . 6 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 27 | eqid 2729 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 28 | eqid 2729 | . . . . . 6 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
| 29 | 26, 27, 28 | isngp 24518 | . . . . 5 ⊢ (𝑊 ∈ NrmGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
| 30 | 23, 25, 29 | 3bitr4g 314 | . . . 4 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmGrp ↔ 𝑊 ∈ NrmGrp)) |
| 31 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
| 32 | 3, 31 | zlmmulr 21462 | . . . . . . 7 ⊢ (.r‘𝐺) = (.r‘𝑊) |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (.r‘𝐺) = (.r‘𝑊)) |
| 34 | 5, 8, 33 | abvpropd2 32938 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → (AbsVal‘𝐺) = (AbsVal‘𝑊)) |
| 35 | 19, 34 | eleq12d 2822 | . . . 4 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∈ (AbsVal‘𝐺) ↔ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
| 36 | 30, 35 | anbi12d 632 | . . 3 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺)) ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊)))) |
| 37 | eqid 2729 | . . . 4 ⊢ (AbsVal‘𝐺) = (AbsVal‘𝐺) | |
| 38 | 18, 37 | isnrg 24582 | . . 3 ⊢ (𝐺 ∈ NrmRing ↔ (𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺))) |
| 39 | eqid 2729 | . . . 4 ⊢ (AbsVal‘𝑊) = (AbsVal‘𝑊) | |
| 40 | 26, 39 | isnrg 24582 | . . 3 ⊢ (𝑊 ∈ NrmRing ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
| 41 | 36, 38, 40 | 3bitr4g 314 | . 2 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmRing ↔ 𝑊 ∈ NrmRing)) |
| 42 | 41 | ibi 267 | 1 ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 × cxp 5629 ∘ ccom 5635 ‘cfv 6499 Basecbs 17156 +gcplusg 17197 .rcmulr 17198 TopSetcts 17203 distcds 17206 Grpcgrp 18848 -gcsg 18850 AbsValcabv 20729 ℤModczlm 21443 MetSpcms 24240 normcnm 24498 NrmGrpcngp 24499 NrmRingcnrg 24501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ds 17219 df-rest 17362 df-topn 17363 df-0g 17381 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mgp 20062 df-ring 20156 df-abv 20730 df-zlm 21447 df-top 22815 df-topon 22832 df-topsp 22854 df-xms 24242 df-ms 24243 df-nm 24504 df-ngp 24505 df-nrg 24507 |
| This theorem is referenced by: cnzh 33952 rezh 33953 qqhnm 33974 |
| Copyright terms: Public domain | W3C validator |