Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zhmnrg | Structured version Visualization version GIF version |
Description: The ℤ-module built from a normed ring is also a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
Ref | Expression |
---|---|
zlmlem2.1 | ⊢ 𝑊 = (ℤMod‘𝐺) |
Ref | Expression |
---|---|
zhmnrg | ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝐺)) |
3 | zlmlem2.1 | . . . . . . . . 9 ⊢ 𝑊 = (ℤMod‘𝐺) | |
4 | 3, 1 | zlmbas 20701 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝑊) |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝑊)) |
6 | eqid 2739 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
7 | 3, 6 | zlmplusg 20703 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝑊) |
8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (+g‘𝐺) = (+g‘𝑊)) |
9 | 8 | oveqdr 7296 | . . . . . . 7 ⊢ ((𝐺 ∈ NrmRing ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝑊)𝑦)) |
10 | 2, 5, 9 | grppropd 18575 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ Grp ↔ 𝑊 ∈ Grp)) |
11 | eqid 2739 | . . . . . . . . 9 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
12 | 3, 11 | zlmds 31891 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (dist‘𝐺) = (dist‘𝑊)) |
13 | 12 | reseq1d 5887 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝑊) ↾ ((Base‘𝐺) × (Base‘𝐺)))) |
14 | eqid 2739 | . . . . . . . . 9 ⊢ (TopSet‘𝐺) = (TopSet‘𝐺) | |
15 | 3, 14 | zlmtset 31893 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (TopSet‘𝐺) = (TopSet‘𝑊)) |
16 | 5, 15 | topnpropd 17128 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (TopOpen‘𝐺) = (TopOpen‘𝑊)) |
17 | 2, 5, 13, 16 | mspropd 23608 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ MetSp ↔ 𝑊 ∈ MetSp)) |
18 | eqid 2739 | . . . . . . . . 9 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
19 | 3, 18 | zlmnm 31895 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (norm‘𝐺) = (norm‘𝑊)) |
20 | 5, 8 | grpsubpropd 18661 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (-g‘𝐺) = (-g‘𝑊)) |
21 | 19, 20 | coeq12d 5770 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∘ (-g‘𝐺)) = ((norm‘𝑊) ∘ (-g‘𝑊))) |
22 | 21, 12 | sseq12d 3958 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺) ↔ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
23 | 10, 17, 22 | 3anbi123d 1434 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺)) ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊)))) |
24 | eqid 2739 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
25 | 18, 24, 11 | isngp 23733 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
26 | eqid 2739 | . . . . . 6 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
27 | eqid 2739 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
28 | eqid 2739 | . . . . . 6 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
29 | 26, 27, 28 | isngp 23733 | . . . . 5 ⊢ (𝑊 ∈ NrmGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
30 | 23, 25, 29 | 3bitr4g 313 | . . . 4 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmGrp ↔ 𝑊 ∈ NrmGrp)) |
31 | eqid 2739 | . . . . . . . 8 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
32 | 3, 31 | zlmmulr 20705 | . . . . . . 7 ⊢ (.r‘𝐺) = (.r‘𝑊) |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (.r‘𝐺) = (.r‘𝑊)) |
34 | 5, 8, 33 | abvpropd2 31216 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → (AbsVal‘𝐺) = (AbsVal‘𝑊)) |
35 | 19, 34 | eleq12d 2834 | . . . 4 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∈ (AbsVal‘𝐺) ↔ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
36 | 30, 35 | anbi12d 630 | . . 3 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺)) ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊)))) |
37 | eqid 2739 | . . . 4 ⊢ (AbsVal‘𝐺) = (AbsVal‘𝐺) | |
38 | 18, 37 | isnrg 23805 | . . 3 ⊢ (𝐺 ∈ NrmRing ↔ (𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺))) |
39 | eqid 2739 | . . . 4 ⊢ (AbsVal‘𝑊) = (AbsVal‘𝑊) | |
40 | 26, 39 | isnrg 23805 | . . 3 ⊢ (𝑊 ∈ NrmRing ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
41 | 36, 38, 40 | 3bitr4g 313 | . 2 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmRing ↔ 𝑊 ∈ NrmRing)) |
42 | 41 | ibi 266 | 1 ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 × cxp 5586 ∘ ccom 5592 ‘cfv 6430 Basecbs 16893 +gcplusg 16943 .rcmulr 16944 TopSetcts 16949 distcds 16952 Grpcgrp 18558 -gcsg 18560 AbsValcabv 20057 ℤModczlm 20683 MetSpcms 23452 normcnm 23713 NrmGrpcngp 23714 NrmRingcnrg 23716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ds 16965 df-rest 17114 df-topn 17115 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-sbg 18563 df-mgp 19702 df-ring 19766 df-abv 20058 df-zlm 20687 df-top 22024 df-topon 22041 df-topsp 22063 df-xms 23454 df-ms 23455 df-nm 23719 df-ngp 23720 df-nrg 23722 |
This theorem is referenced by: cnzh 31899 rezh 31900 qqhnm 31919 |
Copyright terms: Public domain | W3C validator |