Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zhmnrg Structured version   Visualization version   GIF version

Theorem zhmnrg 32885
Description: The -module built from a normed ring is also a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypothesis
Ref Expression
zlmlem2.1 𝑊 = (ℤMod‘𝐺)
Assertion
Ref Expression
zhmnrg (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing)

Proof of Theorem zhmnrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
21a1i 11 . . . . . . 7 (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝐺))
3 zlmlem2.1 . . . . . . . . 9 𝑊 = (ℤMod‘𝐺)
43, 1zlmbas 21052 . . . . . . . 8 (Base‘𝐺) = (Base‘𝑊)
54a1i 11 . . . . . . 7 (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝑊))
6 eqid 2733 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
73, 6zlmplusg 21054 . . . . . . . . 9 (+g𝐺) = (+g𝑊)
87a1i 11 . . . . . . . 8 (𝐺 ∈ NrmRing → (+g𝐺) = (+g𝑊))
98oveqdr 7432 . . . . . . 7 ((𝐺 ∈ NrmRing ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑊)𝑦))
102, 5, 9grppropd 18833 . . . . . 6 (𝐺 ∈ NrmRing → (𝐺 ∈ Grp ↔ 𝑊 ∈ Grp))
11 eqid 2733 . . . . . . . . 9 (dist‘𝐺) = (dist‘𝐺)
123, 11zlmds 32880 . . . . . . . 8 (𝐺 ∈ NrmRing → (dist‘𝐺) = (dist‘𝑊))
1312reseq1d 5978 . . . . . . 7 (𝐺 ∈ NrmRing → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝑊) ↾ ((Base‘𝐺) × (Base‘𝐺))))
14 eqid 2733 . . . . . . . . 9 (TopSet‘𝐺) = (TopSet‘𝐺)
153, 14zlmtset 32882 . . . . . . . 8 (𝐺 ∈ NrmRing → (TopSet‘𝐺) = (TopSet‘𝑊))
165, 15topnpropd 17378 . . . . . . 7 (𝐺 ∈ NrmRing → (TopOpen‘𝐺) = (TopOpen‘𝑊))
172, 5, 13, 16mspropd 23962 . . . . . 6 (𝐺 ∈ NrmRing → (𝐺 ∈ MetSp ↔ 𝑊 ∈ MetSp))
18 eqid 2733 . . . . . . . . 9 (norm‘𝐺) = (norm‘𝐺)
193, 18zlmnm 32884 . . . . . . . 8 (𝐺 ∈ NrmRing → (norm‘𝐺) = (norm‘𝑊))
205, 8grpsubpropd 18924 . . . . . . . 8 (𝐺 ∈ NrmRing → (-g𝐺) = (-g𝑊))
2119, 20coeq12d 5862 . . . . . . 7 (𝐺 ∈ NrmRing → ((norm‘𝐺) ∘ (-g𝐺)) = ((norm‘𝑊) ∘ (-g𝑊)))
2221, 12sseq12d 4014 . . . . . 6 (𝐺 ∈ NrmRing → (((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺) ↔ ((norm‘𝑊) ∘ (-g𝑊)) ⊆ (dist‘𝑊)))
2310, 17, 223anbi123d 1437 . . . . 5 (𝐺 ∈ NrmRing → ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺)) ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g𝑊)) ⊆ (dist‘𝑊))))
24 eqid 2733 . . . . . 6 (-g𝐺) = (-g𝐺)
2518, 24, 11isngp 24087 . . . . 5 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺)))
26 eqid 2733 . . . . . 6 (norm‘𝑊) = (norm‘𝑊)
27 eqid 2733 . . . . . 6 (-g𝑊) = (-g𝑊)
28 eqid 2733 . . . . . 6 (dist‘𝑊) = (dist‘𝑊)
2926, 27, 28isngp 24087 . . . . 5 (𝑊 ∈ NrmGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g𝑊)) ⊆ (dist‘𝑊)))
3023, 25, 293bitr4g 314 . . . 4 (𝐺 ∈ NrmRing → (𝐺 ∈ NrmGrp ↔ 𝑊 ∈ NrmGrp))
31 eqid 2733 . . . . . . . 8 (.r𝐺) = (.r𝐺)
323, 31zlmmulr 21056 . . . . . . 7 (.r𝐺) = (.r𝑊)
3332a1i 11 . . . . . 6 (𝐺 ∈ NrmRing → (.r𝐺) = (.r𝑊))
345, 8, 33abvpropd2 32107 . . . . 5 (𝐺 ∈ NrmRing → (AbsVal‘𝐺) = (AbsVal‘𝑊))
3519, 34eleq12d 2828 . . . 4 (𝐺 ∈ NrmRing → ((norm‘𝐺) ∈ (AbsVal‘𝐺) ↔ (norm‘𝑊) ∈ (AbsVal‘𝑊)))
3630, 35anbi12d 632 . . 3 (𝐺 ∈ NrmRing → ((𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺)) ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊))))
37 eqid 2733 . . . 4 (AbsVal‘𝐺) = (AbsVal‘𝐺)
3818, 37isnrg 24159 . . 3 (𝐺 ∈ NrmRing ↔ (𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺)))
39 eqid 2733 . . . 4 (AbsVal‘𝑊) = (AbsVal‘𝑊)
4026, 39isnrg 24159 . . 3 (𝑊 ∈ NrmRing ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊)))
4136, 38, 403bitr4g 314 . 2 (𝐺 ∈ NrmRing → (𝐺 ∈ NrmRing ↔ 𝑊 ∈ NrmRing))
4241ibi 267 1 (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wss 3947   × cxp 5673  ccom 5679  cfv 6540  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  TopSetcts 17199  distcds 17202  Grpcgrp 18815  -gcsg 18817  AbsValcabv 20412  ℤModczlm 21034  MetSpcms 23806  normcnm 24067  NrmGrpcngp 24068  NrmRingcnrg 24070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ds 17215  df-rest 17364  df-topn 17365  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mgp 19980  df-ring 20049  df-abv 20413  df-zlm 21038  df-top 22378  df-topon 22395  df-topsp 22417  df-xms 23808  df-ms 23809  df-nm 24073  df-ngp 24074  df-nrg 24076
This theorem is referenced by:  cnzh  32888  rezh  32889  qqhnm  32908
  Copyright terms: Public domain W3C validator