Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zhmnrg Structured version   Visualization version   GIF version

Theorem zhmnrg 33963
Description: The -module built from a normed ring is also a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypothesis
Ref Expression
zlmlem2.1 𝑊 = (ℤMod‘𝐺)
Assertion
Ref Expression
zhmnrg (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing)

Proof of Theorem zhmnrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
21a1i 11 . . . . . . 7 (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝐺))
3 zlmlem2.1 . . . . . . . . 9 𝑊 = (ℤMod‘𝐺)
43, 1zlmbas 21433 . . . . . . . 8 (Base‘𝐺) = (Base‘𝑊)
54a1i 11 . . . . . . 7 (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝑊))
6 eqid 2730 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
73, 6zlmplusg 21434 . . . . . . . . 9 (+g𝐺) = (+g𝑊)
87a1i 11 . . . . . . . 8 (𝐺 ∈ NrmRing → (+g𝐺) = (+g𝑊))
98oveqdr 7422 . . . . . . 7 ((𝐺 ∈ NrmRing ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑊)𝑦))
102, 5, 9grppropd 18889 . . . . . 6 (𝐺 ∈ NrmRing → (𝐺 ∈ Grp ↔ 𝑊 ∈ Grp))
11 eqid 2730 . . . . . . . . 9 (dist‘𝐺) = (dist‘𝐺)
123, 11zlmds 33960 . . . . . . . 8 (𝐺 ∈ NrmRing → (dist‘𝐺) = (dist‘𝑊))
1312reseq1d 5957 . . . . . . 7 (𝐺 ∈ NrmRing → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝑊) ↾ ((Base‘𝐺) × (Base‘𝐺))))
14 eqid 2730 . . . . . . . . 9 (TopSet‘𝐺) = (TopSet‘𝐺)
153, 14zlmtset 33961 . . . . . . . 8 (𝐺 ∈ NrmRing → (TopSet‘𝐺) = (TopSet‘𝑊))
165, 15topnpropd 17405 . . . . . . 7 (𝐺 ∈ NrmRing → (TopOpen‘𝐺) = (TopOpen‘𝑊))
172, 5, 13, 16mspropd 24368 . . . . . 6 (𝐺 ∈ NrmRing → (𝐺 ∈ MetSp ↔ 𝑊 ∈ MetSp))
18 eqid 2730 . . . . . . . . 9 (norm‘𝐺) = (norm‘𝐺)
193, 18zlmnm 33962 . . . . . . . 8 (𝐺 ∈ NrmRing → (norm‘𝐺) = (norm‘𝑊))
205, 8grpsubpropd 18983 . . . . . . . 8 (𝐺 ∈ NrmRing → (-g𝐺) = (-g𝑊))
2119, 20coeq12d 5836 . . . . . . 7 (𝐺 ∈ NrmRing → ((norm‘𝐺) ∘ (-g𝐺)) = ((norm‘𝑊) ∘ (-g𝑊)))
2221, 12sseq12d 3988 . . . . . 6 (𝐺 ∈ NrmRing → (((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺) ↔ ((norm‘𝑊) ∘ (-g𝑊)) ⊆ (dist‘𝑊)))
2310, 17, 223anbi123d 1438 . . . . 5 (𝐺 ∈ NrmRing → ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺)) ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g𝑊)) ⊆ (dist‘𝑊))))
24 eqid 2730 . . . . . 6 (-g𝐺) = (-g𝐺)
2518, 24, 11isngp 24490 . . . . 5 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺)))
26 eqid 2730 . . . . . 6 (norm‘𝑊) = (norm‘𝑊)
27 eqid 2730 . . . . . 6 (-g𝑊) = (-g𝑊)
28 eqid 2730 . . . . . 6 (dist‘𝑊) = (dist‘𝑊)
2926, 27, 28isngp 24490 . . . . 5 (𝑊 ∈ NrmGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g𝑊)) ⊆ (dist‘𝑊)))
3023, 25, 293bitr4g 314 . . . 4 (𝐺 ∈ NrmRing → (𝐺 ∈ NrmGrp ↔ 𝑊 ∈ NrmGrp))
31 eqid 2730 . . . . . . . 8 (.r𝐺) = (.r𝐺)
323, 31zlmmulr 21435 . . . . . . 7 (.r𝐺) = (.r𝑊)
3332a1i 11 . . . . . 6 (𝐺 ∈ NrmRing → (.r𝐺) = (.r𝑊))
345, 8, 33abvpropd2 32895 . . . . 5 (𝐺 ∈ NrmRing → (AbsVal‘𝐺) = (AbsVal‘𝑊))
3519, 34eleq12d 2823 . . . 4 (𝐺 ∈ NrmRing → ((norm‘𝐺) ∈ (AbsVal‘𝐺) ↔ (norm‘𝑊) ∈ (AbsVal‘𝑊)))
3630, 35anbi12d 632 . . 3 (𝐺 ∈ NrmRing → ((𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺)) ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊))))
37 eqid 2730 . . . 4 (AbsVal‘𝐺) = (AbsVal‘𝐺)
3818, 37isnrg 24554 . . 3 (𝐺 ∈ NrmRing ↔ (𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺)))
39 eqid 2730 . . . 4 (AbsVal‘𝑊) = (AbsVal‘𝑊)
4026, 39isnrg 24554 . . 3 (𝑊 ∈ NrmRing ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊)))
4136, 38, 403bitr4g 314 . 2 (𝐺 ∈ NrmRing → (𝐺 ∈ NrmRing ↔ 𝑊 ∈ NrmRing))
4241ibi 267 1 (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3922   × cxp 5644  ccom 5650  cfv 6519  Basecbs 17185  +gcplusg 17226  .rcmulr 17227  TopSetcts 17232  distcds 17235  Grpcgrp 18871  -gcsg 18873  AbsValcabv 20723  ℤModczlm 21416  MetSpcms 24212  normcnm 24470  NrmGrpcngp 24471  NrmRingcnrg 24473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-er 8682  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ds 17248  df-rest 17391  df-topn 17392  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mgp 20056  df-ring 20150  df-abv 20724  df-zlm 21420  df-top 22787  df-topon 22804  df-topsp 22826  df-xms 24214  df-ms 24215  df-nm 24476  df-ngp 24477  df-nrg 24479
This theorem is referenced by:  cnzh  33966  rezh  33967  qqhnm  33988
  Copyright terms: Public domain W3C validator