| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zhmnrg | Structured version Visualization version GIF version | ||
| Description: The ℤ-module built from a normed ring is also a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| Ref | Expression |
|---|---|
| zlmlem2.1 | ⊢ 𝑊 = (ℤMod‘𝐺) |
| Ref | Expression |
|---|---|
| zhmnrg | ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝐺)) |
| 3 | zlmlem2.1 | . . . . . . . . 9 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 4 | 3, 1 | zlmbas 21489 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝑊) |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝑊)) |
| 6 | eqid 2734 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 7 | 3, 6 | zlmplusg 21490 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝑊) |
| 8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (+g‘𝐺) = (+g‘𝑊)) |
| 9 | 8 | oveqdr 7440 | . . . . . . 7 ⊢ ((𝐺 ∈ NrmRing ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝑊)𝑦)) |
| 10 | 2, 5, 9 | grppropd 18937 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ Grp ↔ 𝑊 ∈ Grp)) |
| 11 | eqid 2734 | . . . . . . . . 9 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 12 | 3, 11 | zlmds 33895 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (dist‘𝐺) = (dist‘𝑊)) |
| 13 | 12 | reseq1d 5976 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝑊) ↾ ((Base‘𝐺) × (Base‘𝐺)))) |
| 14 | eqid 2734 | . . . . . . . . 9 ⊢ (TopSet‘𝐺) = (TopSet‘𝐺) | |
| 15 | 3, 14 | zlmtset 33897 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (TopSet‘𝐺) = (TopSet‘𝑊)) |
| 16 | 5, 15 | topnpropd 17451 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (TopOpen‘𝐺) = (TopOpen‘𝑊)) |
| 17 | 2, 5, 13, 16 | mspropd 24428 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ MetSp ↔ 𝑊 ∈ MetSp)) |
| 18 | eqid 2734 | . . . . . . . . 9 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 19 | 3, 18 | zlmnm 33899 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (norm‘𝐺) = (norm‘𝑊)) |
| 20 | 5, 8 | grpsubpropd 19031 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (-g‘𝐺) = (-g‘𝑊)) |
| 21 | 19, 20 | coeq12d 5855 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∘ (-g‘𝐺)) = ((norm‘𝑊) ∘ (-g‘𝑊))) |
| 22 | 21, 12 | sseq12d 3997 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺) ↔ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
| 23 | 10, 17, 22 | 3anbi123d 1437 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺)) ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊)))) |
| 24 | eqid 2734 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 25 | 18, 24, 11 | isngp 24552 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 26 | eqid 2734 | . . . . . 6 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 27 | eqid 2734 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 28 | eqid 2734 | . . . . . 6 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
| 29 | 26, 27, 28 | isngp 24552 | . . . . 5 ⊢ (𝑊 ∈ NrmGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
| 30 | 23, 25, 29 | 3bitr4g 314 | . . . 4 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmGrp ↔ 𝑊 ∈ NrmGrp)) |
| 31 | eqid 2734 | . . . . . . . 8 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
| 32 | 3, 31 | zlmmulr 21491 | . . . . . . 7 ⊢ (.r‘𝐺) = (.r‘𝑊) |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (.r‘𝐺) = (.r‘𝑊)) |
| 34 | 5, 8, 33 | abvpropd2 32881 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → (AbsVal‘𝐺) = (AbsVal‘𝑊)) |
| 35 | 19, 34 | eleq12d 2827 | . . . 4 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∈ (AbsVal‘𝐺) ↔ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
| 36 | 30, 35 | anbi12d 632 | . . 3 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺)) ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊)))) |
| 37 | eqid 2734 | . . . 4 ⊢ (AbsVal‘𝐺) = (AbsVal‘𝐺) | |
| 38 | 18, 37 | isnrg 24616 | . . 3 ⊢ (𝐺 ∈ NrmRing ↔ (𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺))) |
| 39 | eqid 2734 | . . . 4 ⊢ (AbsVal‘𝑊) = (AbsVal‘𝑊) | |
| 40 | 26, 39 | isnrg 24616 | . . 3 ⊢ (𝑊 ∈ NrmRing ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
| 41 | 36, 38, 40 | 3bitr4g 314 | . 2 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmRing ↔ 𝑊 ∈ NrmRing)) |
| 42 | 41 | ibi 267 | 1 ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 × cxp 5663 ∘ ccom 5669 ‘cfv 6540 Basecbs 17228 +gcplusg 17272 .rcmulr 17273 TopSetcts 17278 distcds 17281 Grpcgrp 18919 -gcsg 18921 AbsValcabv 20776 ℤModczlm 21472 MetSpcms 24272 normcnm 24532 NrmGrpcngp 24533 NrmRingcnrg 24535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-plusg 17285 df-mulr 17286 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ds 17294 df-rest 17437 df-topn 17438 df-0g 17456 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-grp 18922 df-minusg 18923 df-sbg 18924 df-mgp 20105 df-ring 20199 df-abv 20777 df-zlm 21476 df-top 22847 df-topon 22864 df-topsp 22886 df-xms 24274 df-ms 24275 df-nm 24538 df-ngp 24539 df-nrg 24541 |
| This theorem is referenced by: cnzh 33903 rezh 33904 qqhnm 33925 |
| Copyright terms: Public domain | W3C validator |