| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zhmnrg | Structured version Visualization version GIF version | ||
| Description: The ℤ-module built from a normed ring is also a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| Ref | Expression |
|---|---|
| zlmlem2.1 | ⊢ 𝑊 = (ℤMod‘𝐺) |
| Ref | Expression |
|---|---|
| zhmnrg | ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝐺)) |
| 3 | zlmlem2.1 | . . . . . . . . 9 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 4 | 3, 1 | zlmbas 21433 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝑊) |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝑊)) |
| 6 | eqid 2730 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 7 | 3, 6 | zlmplusg 21434 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝑊) |
| 8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (+g‘𝐺) = (+g‘𝑊)) |
| 9 | 8 | oveqdr 7422 | . . . . . . 7 ⊢ ((𝐺 ∈ NrmRing ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝑊)𝑦)) |
| 10 | 2, 5, 9 | grppropd 18889 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ Grp ↔ 𝑊 ∈ Grp)) |
| 11 | eqid 2730 | . . . . . . . . 9 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 12 | 3, 11 | zlmds 33960 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (dist‘𝐺) = (dist‘𝑊)) |
| 13 | 12 | reseq1d 5957 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝑊) ↾ ((Base‘𝐺) × (Base‘𝐺)))) |
| 14 | eqid 2730 | . . . . . . . . 9 ⊢ (TopSet‘𝐺) = (TopSet‘𝐺) | |
| 15 | 3, 14 | zlmtset 33961 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (TopSet‘𝐺) = (TopSet‘𝑊)) |
| 16 | 5, 15 | topnpropd 17405 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (TopOpen‘𝐺) = (TopOpen‘𝑊)) |
| 17 | 2, 5, 13, 16 | mspropd 24368 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ MetSp ↔ 𝑊 ∈ MetSp)) |
| 18 | eqid 2730 | . . . . . . . . 9 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 19 | 3, 18 | zlmnm 33962 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (norm‘𝐺) = (norm‘𝑊)) |
| 20 | 5, 8 | grpsubpropd 18983 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (-g‘𝐺) = (-g‘𝑊)) |
| 21 | 19, 20 | coeq12d 5836 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∘ (-g‘𝐺)) = ((norm‘𝑊) ∘ (-g‘𝑊))) |
| 22 | 21, 12 | sseq12d 3988 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺) ↔ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
| 23 | 10, 17, 22 | 3anbi123d 1438 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺)) ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊)))) |
| 24 | eqid 2730 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 25 | 18, 24, 11 | isngp 24490 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 26 | eqid 2730 | . . . . . 6 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 27 | eqid 2730 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 28 | eqid 2730 | . . . . . 6 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
| 29 | 26, 27, 28 | isngp 24490 | . . . . 5 ⊢ (𝑊 ∈ NrmGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
| 30 | 23, 25, 29 | 3bitr4g 314 | . . . 4 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmGrp ↔ 𝑊 ∈ NrmGrp)) |
| 31 | eqid 2730 | . . . . . . . 8 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
| 32 | 3, 31 | zlmmulr 21435 | . . . . . . 7 ⊢ (.r‘𝐺) = (.r‘𝑊) |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (.r‘𝐺) = (.r‘𝑊)) |
| 34 | 5, 8, 33 | abvpropd2 32895 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → (AbsVal‘𝐺) = (AbsVal‘𝑊)) |
| 35 | 19, 34 | eleq12d 2823 | . . . 4 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∈ (AbsVal‘𝐺) ↔ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
| 36 | 30, 35 | anbi12d 632 | . . 3 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺)) ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊)))) |
| 37 | eqid 2730 | . . . 4 ⊢ (AbsVal‘𝐺) = (AbsVal‘𝐺) | |
| 38 | 18, 37 | isnrg 24554 | . . 3 ⊢ (𝐺 ∈ NrmRing ↔ (𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺))) |
| 39 | eqid 2730 | . . . 4 ⊢ (AbsVal‘𝑊) = (AbsVal‘𝑊) | |
| 40 | 26, 39 | isnrg 24554 | . . 3 ⊢ (𝑊 ∈ NrmRing ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
| 41 | 36, 38, 40 | 3bitr4g 314 | . 2 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmRing ↔ 𝑊 ∈ NrmRing)) |
| 42 | 41 | ibi 267 | 1 ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 × cxp 5644 ∘ ccom 5650 ‘cfv 6519 Basecbs 17185 +gcplusg 17226 .rcmulr 17227 TopSetcts 17232 distcds 17235 Grpcgrp 18871 -gcsg 18873 AbsValcabv 20723 ℤModczlm 21416 MetSpcms 24212 normcnm 24470 NrmGrpcngp 24471 NrmRingcnrg 24473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ds 17248 df-rest 17391 df-topn 17392 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mgp 20056 df-ring 20150 df-abv 20724 df-zlm 21420 df-top 22787 df-topon 22804 df-topsp 22826 df-xms 24214 df-ms 24215 df-nm 24476 df-ngp 24477 df-nrg 24479 |
| This theorem is referenced by: cnzh 33966 rezh 33967 qqhnm 33988 |
| Copyright terms: Public domain | W3C validator |