MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngnrg Structured version   Visualization version   GIF version

Theorem tngnrg 23838
Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngnrg.t 𝑇 = (𝑅 toNrmGrp 𝐹)
tngnrg.a 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
tngnrg (𝐹𝐴𝑇 ∈ NrmRing)

Proof of Theorem tngnrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngnrg.a . . . . 5 𝐴 = (AbsVal‘𝑅)
21abvrcl 20081 . . . 4 (𝐹𝐴𝑅 ∈ Ring)
3 ringgrp 19788 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
42, 3syl 17 . . 3 (𝐹𝐴𝑅 ∈ Grp)
5 tngnrg.t . . . . 5 𝑇 = (𝑅 toNrmGrp 𝐹)
6 eqid 2738 . . . . 5 (-g𝑅) = (-g𝑅)
75, 6tngds 23811 . . . 4 (𝐹𝐴 → (𝐹 ∘ (-g𝑅)) = (dist‘𝑇))
8 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
98, 1, 6abvmet 23731 . . . 4 (𝐹𝐴 → (𝐹 ∘ (-g𝑅)) ∈ (Met‘(Base‘𝑅)))
107, 9eqeltrrd 2840 . . 3 (𝐹𝐴 → (dist‘𝑇) ∈ (Met‘(Base‘𝑅)))
111, 8abvf 20083 . . . 4 (𝐹𝐴𝐹:(Base‘𝑅)⟶ℝ)
12 eqid 2738 . . . . 5 (dist‘𝑇) = (dist‘𝑇)
135, 8, 12tngngp2 23816 . . . 4 (𝐹:(Base‘𝑅)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅)))))
1411, 13syl 17 . . 3 (𝐹𝐴 → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅)))))
154, 10, 14mpbir2and 710 . 2 (𝐹𝐴𝑇 ∈ NrmGrp)
16 reex 10962 . . . . . 6 ℝ ∈ V
175, 8, 16tngnm 23815 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐹:(Base‘𝑅)⟶ℝ) → 𝐹 = (norm‘𝑇))
184, 11, 17syl2anc 584 . . . 4 (𝐹𝐴𝐹 = (norm‘𝑇))
19 eqidd 2739 . . . . . 6 (𝐹𝐴 → (Base‘𝑅) = (Base‘𝑅))
205, 8tngbas 23798 . . . . . 6 (𝐹𝐴 → (Base‘𝑅) = (Base‘𝑇))
21 eqid 2738 . . . . . . . 8 (+g𝑅) = (+g𝑅)
225, 21tngplusg 23800 . . . . . . 7 (𝐹𝐴 → (+g𝑅) = (+g𝑇))
2322oveqdr 7303 . . . . . 6 ((𝐹𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑇)𝑦))
24 eqid 2738 . . . . . . . 8 (.r𝑅) = (.r𝑅)
255, 24tngmulr 23803 . . . . . . 7 (𝐹𝐴 → (.r𝑅) = (.r𝑇))
2625oveqdr 7303 . . . . . 6 ((𝐹𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑇)𝑦))
2719, 20, 23, 26abvpropd 20102 . . . . 5 (𝐹𝐴 → (AbsVal‘𝑅) = (AbsVal‘𝑇))
281, 27eqtrid 2790 . . . 4 (𝐹𝐴𝐴 = (AbsVal‘𝑇))
2918, 28eleq12d 2833 . . 3 (𝐹𝐴 → (𝐹𝐴 ↔ (norm‘𝑇) ∈ (AbsVal‘𝑇)))
3029ibi 266 . 2 (𝐹𝐴 → (norm‘𝑇) ∈ (AbsVal‘𝑇))
31 eqid 2738 . . 3 (norm‘𝑇) = (norm‘𝑇)
32 eqid 2738 . . 3 (AbsVal‘𝑇) = (AbsVal‘𝑇)
3331, 32isnrg 23824 . 2 (𝑇 ∈ NrmRing ↔ (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) ∈ (AbsVal‘𝑇)))
3415, 30, 33sylanbrc 583 1 (𝐹𝐴𝑇 ∈ NrmRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  distcds 16971  Grpcgrp 18577  -gcsg 18579  Ringcrg 19783  AbsValcabv 20076  Metcmet 20583  normcnm 23732  NrmGrpcngp 23733   toNrmGrp ctng 23734  NrmRingcnrg 23735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-seq 13722  df-exp 13783  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-tset 16981  df-ds 16984  df-rest 17133  df-topn 17134  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mgp 19721  df-ur 19738  df-ring 19785  df-abv 20077  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-xms 23473  df-ms 23474  df-nm 23738  df-ngp 23739  df-tng 23740  df-nrg 23741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator