Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tngnrg | Structured version Visualization version GIF version |
Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
tngnrg.t | ⊢ 𝑇 = (𝑅 toNrmGrp 𝐹) |
tngnrg.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
tngnrg | ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tngnrg.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | 1 | abvrcl 20081 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
3 | ringgrp 19788 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Grp) |
5 | tngnrg.t | . . . . 5 ⊢ 𝑇 = (𝑅 toNrmGrp 𝐹) | |
6 | eqid 2738 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
7 | 5, 6 | tngds 23811 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∘ (-g‘𝑅)) = (dist‘𝑇)) |
8 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 8, 1, 6 | abvmet 23731 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∘ (-g‘𝑅)) ∈ (Met‘(Base‘𝑅))) |
10 | 7, 9 | eqeltrrd 2840 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (dist‘𝑇) ∈ (Met‘(Base‘𝑅))) |
11 | 1, 8 | abvf 20083 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐹:(Base‘𝑅)⟶ℝ) |
12 | eqid 2738 | . . . . 5 ⊢ (dist‘𝑇) = (dist‘𝑇) | |
13 | 5, 8, 12 | tngngp2 23816 | . . . 4 ⊢ (𝐹:(Base‘𝑅)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅))))) |
14 | 11, 13 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅))))) |
15 | 4, 10, 14 | mpbir2and 710 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmGrp) |
16 | reex 10962 | . . . . . 6 ⊢ ℝ ∈ V | |
17 | 5, 8, 16 | tngnm 23815 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐹:(Base‘𝑅)⟶ℝ) → 𝐹 = (norm‘𝑇)) |
18 | 4, 11, 17 | syl2anc 584 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐹 = (norm‘𝑇)) |
19 | eqidd 2739 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → (Base‘𝑅) = (Base‘𝑅)) | |
20 | 5, 8 | tngbas 23798 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → (Base‘𝑅) = (Base‘𝑇)) |
21 | eqid 2738 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
22 | 5, 21 | tngplusg 23800 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → (+g‘𝑅) = (+g‘𝑇)) |
23 | 22 | oveqdr 7303 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑇)𝑦)) |
24 | eqid 2738 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
25 | 5, 24 | tngmulr 23803 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → (.r‘𝑅) = (.r‘𝑇)) |
26 | 25 | oveqdr 7303 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑇)𝑦)) |
27 | 19, 20, 23, 26 | abvpropd 20102 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → (AbsVal‘𝑅) = (AbsVal‘𝑇)) |
28 | 1, 27 | eqtrid 2790 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐴 = (AbsVal‘𝑇)) |
29 | 18, 28 | eleq12d 2833 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ 𝐴 ↔ (norm‘𝑇) ∈ (AbsVal‘𝑇))) |
30 | 29 | ibi 266 | . 2 ⊢ (𝐹 ∈ 𝐴 → (norm‘𝑇) ∈ (AbsVal‘𝑇)) |
31 | eqid 2738 | . . 3 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
32 | eqid 2738 | . . 3 ⊢ (AbsVal‘𝑇) = (AbsVal‘𝑇) | |
33 | 31, 32 | isnrg 23824 | . 2 ⊢ (𝑇 ∈ NrmRing ↔ (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) ∈ (AbsVal‘𝑇))) |
34 | 15, 30, 33 | sylanbrc 583 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 distcds 16971 Grpcgrp 18577 -gcsg 18579 Ringcrg 19783 AbsValcabv 20076 Metcmet 20583 normcnm 23732 NrmGrpcngp 23733 toNrmGrp ctng 23734 NrmRingcnrg 23735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ico 13085 df-seq 13722 df-exp 13783 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-tset 16981 df-ds 16984 df-rest 17133 df-topn 17134 df-0g 17152 df-topgen 17154 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mgp 19721 df-ur 19738 df-ring 19785 df-abv 20077 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-xms 23473 df-ms 23474 df-nm 23738 df-ngp 23739 df-tng 23740 df-nrg 23741 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |