| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tngnrg | Structured version Visualization version GIF version | ||
| Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| tngnrg.t | ⊢ 𝑇 = (𝑅 toNrmGrp 𝐹) |
| tngnrg.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| Ref | Expression |
|---|---|
| tngnrg | ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngnrg.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 2 | 1 | abvrcl 20771 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| 3 | ringgrp 20196 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Grp) |
| 5 | tngnrg.t | . . . . 5 ⊢ 𝑇 = (𝑅 toNrmGrp 𝐹) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 7 | 5, 6 | tngds 24585 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∘ (-g‘𝑅)) = (dist‘𝑇)) |
| 8 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | 8, 1, 6 | abvmet 24512 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∘ (-g‘𝑅)) ∈ (Met‘(Base‘𝑅))) |
| 10 | 7, 9 | eqeltrrd 2835 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (dist‘𝑇) ∈ (Met‘(Base‘𝑅))) |
| 11 | 1, 8 | abvf 20773 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐹:(Base‘𝑅)⟶ℝ) |
| 12 | eqid 2735 | . . . . 5 ⊢ (dist‘𝑇) = (dist‘𝑇) | |
| 13 | 5, 8, 12 | tngngp2 24589 | . . . 4 ⊢ (𝐹:(Base‘𝑅)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅))))) |
| 14 | 11, 13 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅))))) |
| 15 | 4, 10, 14 | mpbir2and 713 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmGrp) |
| 16 | reex 11218 | . . . . . 6 ⊢ ℝ ∈ V | |
| 17 | 5, 8, 16 | tngnm 24588 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐹:(Base‘𝑅)⟶ℝ) → 𝐹 = (norm‘𝑇)) |
| 18 | 4, 11, 17 | syl2anc 584 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐹 = (norm‘𝑇)) |
| 19 | eqidd 2736 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → (Base‘𝑅) = (Base‘𝑅)) | |
| 20 | 5, 8 | tngbas 24578 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → (Base‘𝑅) = (Base‘𝑇)) |
| 21 | eqid 2735 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 22 | 5, 21 | tngplusg 24579 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → (+g‘𝑅) = (+g‘𝑇)) |
| 23 | 22 | oveqdr 7431 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑇)𝑦)) |
| 24 | eqid 2735 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 25 | 5, 24 | tngmulr 24581 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → (.r‘𝑅) = (.r‘𝑇)) |
| 26 | 25 | oveqdr 7431 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑇)𝑦)) |
| 27 | 19, 20, 23, 26 | abvpropd 20793 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → (AbsVal‘𝑅) = (AbsVal‘𝑇)) |
| 28 | 1, 27 | eqtrid 2782 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐴 = (AbsVal‘𝑇)) |
| 29 | 18, 28 | eleq12d 2828 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ 𝐴 ↔ (norm‘𝑇) ∈ (AbsVal‘𝑇))) |
| 30 | 29 | ibi 267 | . 2 ⊢ (𝐹 ∈ 𝐴 → (norm‘𝑇) ∈ (AbsVal‘𝑇)) |
| 31 | eqid 2735 | . . 3 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
| 32 | eqid 2735 | . . 3 ⊢ (AbsVal‘𝑇) = (AbsVal‘𝑇) | |
| 33 | 31, 32 | isnrg 24597 | . 2 ⊢ (𝑇 ∈ NrmRing ↔ (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) ∈ (AbsVal‘𝑇))) |
| 34 | 15, 30, 33 | sylanbrc 583 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∘ ccom 5658 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 Basecbs 17226 +gcplusg 17269 .rcmulr 17270 distcds 17278 Grpcgrp 18914 -gcsg 18916 Ringcrg 20191 AbsValcabv 20766 Metcmet 21299 normcnm 24513 NrmGrpcngp 24514 toNrmGrp ctng 24515 NrmRingcnrg 24516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ico 13366 df-seq 14018 df-exp 14078 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-mulr 17283 df-tset 17288 df-ds 17291 df-rest 17434 df-topn 17435 df-0g 17453 df-topgen 17455 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-sbg 18919 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-abv 20767 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-xms 24257 df-ms 24258 df-nm 24519 df-ngp 24520 df-tng 24521 df-nrg 24522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |