MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngnrg Structured version   Visualization version   GIF version

Theorem tngnrg 24710
Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngnrg.t 𝑇 = (𝑅 toNrmGrp 𝐹)
tngnrg.a 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
tngnrg (𝐹𝐴𝑇 ∈ NrmRing)

Proof of Theorem tngnrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngnrg.a . . . . 5 𝐴 = (AbsVal‘𝑅)
21abvrcl 20830 . . . 4 (𝐹𝐴𝑅 ∈ Ring)
3 ringgrp 20255 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
42, 3syl 17 . . 3 (𝐹𝐴𝑅 ∈ Grp)
5 tngnrg.t . . . . 5 𝑇 = (𝑅 toNrmGrp 𝐹)
6 eqid 2734 . . . . 5 (-g𝑅) = (-g𝑅)
75, 6tngds 24683 . . . 4 (𝐹𝐴 → (𝐹 ∘ (-g𝑅)) = (dist‘𝑇))
8 eqid 2734 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
98, 1, 6abvmet 24603 . . . 4 (𝐹𝐴 → (𝐹 ∘ (-g𝑅)) ∈ (Met‘(Base‘𝑅)))
107, 9eqeltrrd 2839 . . 3 (𝐹𝐴 → (dist‘𝑇) ∈ (Met‘(Base‘𝑅)))
111, 8abvf 20832 . . . 4 (𝐹𝐴𝐹:(Base‘𝑅)⟶ℝ)
12 eqid 2734 . . . . 5 (dist‘𝑇) = (dist‘𝑇)
135, 8, 12tngngp2 24688 . . . 4 (𝐹:(Base‘𝑅)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅)))))
1411, 13syl 17 . . 3 (𝐹𝐴 → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅)))))
154, 10, 14mpbir2and 713 . 2 (𝐹𝐴𝑇 ∈ NrmGrp)
16 reex 11243 . . . . . 6 ℝ ∈ V
175, 8, 16tngnm 24687 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐹:(Base‘𝑅)⟶ℝ) → 𝐹 = (norm‘𝑇))
184, 11, 17syl2anc 584 . . . 4 (𝐹𝐴𝐹 = (norm‘𝑇))
19 eqidd 2735 . . . . . 6 (𝐹𝐴 → (Base‘𝑅) = (Base‘𝑅))
205, 8tngbas 24670 . . . . . 6 (𝐹𝐴 → (Base‘𝑅) = (Base‘𝑇))
21 eqid 2734 . . . . . . . 8 (+g𝑅) = (+g𝑅)
225, 21tngplusg 24672 . . . . . . 7 (𝐹𝐴 → (+g𝑅) = (+g𝑇))
2322oveqdr 7458 . . . . . 6 ((𝐹𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑇)𝑦))
24 eqid 2734 . . . . . . . 8 (.r𝑅) = (.r𝑅)
255, 24tngmulr 24675 . . . . . . 7 (𝐹𝐴 → (.r𝑅) = (.r𝑇))
2625oveqdr 7458 . . . . . 6 ((𝐹𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑇)𝑦))
2719, 20, 23, 26abvpropd 20852 . . . . 5 (𝐹𝐴 → (AbsVal‘𝑅) = (AbsVal‘𝑇))
281, 27eqtrid 2786 . . . 4 (𝐹𝐴𝐴 = (AbsVal‘𝑇))
2918, 28eleq12d 2832 . . 3 (𝐹𝐴 → (𝐹𝐴 ↔ (norm‘𝑇) ∈ (AbsVal‘𝑇)))
3029ibi 267 . 2 (𝐹𝐴 → (norm‘𝑇) ∈ (AbsVal‘𝑇))
31 eqid 2734 . . 3 (norm‘𝑇) = (norm‘𝑇)
32 eqid 2734 . . 3 (AbsVal‘𝑇) = (AbsVal‘𝑇)
3331, 32isnrg 24696 . 2 (𝑇 ∈ NrmRing ↔ (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) ∈ (AbsVal‘𝑇)))
3415, 30, 33sylanbrc 583 1 (𝐹𝐴𝑇 ∈ NrmRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  ccom 5692  wf 6558  cfv 6562  (class class class)co 7430  cr 11151  Basecbs 17244  +gcplusg 17297  .rcmulr 17298  distcds 17306  Grpcgrp 18963  -gcsg 18965  Ringcrg 20250  AbsValcabv 20825  Metcmet 21367  normcnm 24604  NrmGrpcngp 24605   toNrmGrp ctng 24606  NrmRingcnrg 24607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ico 13389  df-seq 14039  df-exp 14099  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-tset 17316  df-ds 17319  df-rest 17468  df-topn 17469  df-0g 17487  df-topgen 17489  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-sbg 18968  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-abv 20826  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-xms 24345  df-ms 24346  df-nm 24610  df-ngp 24611  df-tng 24612  df-nrg 24613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator