![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tngnrg | Structured version Visualization version GIF version |
Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
tngnrg.t | β’ π = (π toNrmGrp πΉ) |
tngnrg.a | β’ π΄ = (AbsValβπ ) |
Ref | Expression |
---|---|
tngnrg | β’ (πΉ β π΄ β π β NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tngnrg.a | . . . . 5 β’ π΄ = (AbsValβπ ) | |
2 | 1 | abvrcl 20428 | . . . 4 β’ (πΉ β π΄ β π β Ring) |
3 | ringgrp 20060 | . . . 4 β’ (π β Ring β π β Grp) | |
4 | 2, 3 | syl 17 | . . 3 β’ (πΉ β π΄ β π β Grp) |
5 | tngnrg.t | . . . . 5 β’ π = (π toNrmGrp πΉ) | |
6 | eqid 2732 | . . . . 5 β’ (-gβπ ) = (-gβπ ) | |
7 | 5, 6 | tngds 24163 | . . . 4 β’ (πΉ β π΄ β (πΉ β (-gβπ )) = (distβπ)) |
8 | eqid 2732 | . . . . 5 β’ (Baseβπ ) = (Baseβπ ) | |
9 | 8, 1, 6 | abvmet 24083 | . . . 4 β’ (πΉ β π΄ β (πΉ β (-gβπ )) β (Metβ(Baseβπ ))) |
10 | 7, 9 | eqeltrrd 2834 | . . 3 β’ (πΉ β π΄ β (distβπ) β (Metβ(Baseβπ ))) |
11 | 1, 8 | abvf 20430 | . . . 4 β’ (πΉ β π΄ β πΉ:(Baseβπ )βΆβ) |
12 | eqid 2732 | . . . . 5 β’ (distβπ) = (distβπ) | |
13 | 5, 8, 12 | tngngp2 24168 | . . . 4 β’ (πΉ:(Baseβπ )βΆβ β (π β NrmGrp β (π β Grp β§ (distβπ) β (Metβ(Baseβπ ))))) |
14 | 11, 13 | syl 17 | . . 3 β’ (πΉ β π΄ β (π β NrmGrp β (π β Grp β§ (distβπ) β (Metβ(Baseβπ ))))) |
15 | 4, 10, 14 | mpbir2and 711 | . 2 β’ (πΉ β π΄ β π β NrmGrp) |
16 | reex 11200 | . . . . . 6 β’ β β V | |
17 | 5, 8, 16 | tngnm 24167 | . . . . 5 β’ ((π β Grp β§ πΉ:(Baseβπ )βΆβ) β πΉ = (normβπ)) |
18 | 4, 11, 17 | syl2anc 584 | . . . 4 β’ (πΉ β π΄ β πΉ = (normβπ)) |
19 | eqidd 2733 | . . . . . 6 β’ (πΉ β π΄ β (Baseβπ ) = (Baseβπ )) | |
20 | 5, 8 | tngbas 24150 | . . . . . 6 β’ (πΉ β π΄ β (Baseβπ ) = (Baseβπ)) |
21 | eqid 2732 | . . . . . . . 8 β’ (+gβπ ) = (+gβπ ) | |
22 | 5, 21 | tngplusg 24152 | . . . . . . 7 β’ (πΉ β π΄ β (+gβπ ) = (+gβπ)) |
23 | 22 | oveqdr 7436 | . . . . . 6 β’ ((πΉ β π΄ β§ (π₯ β (Baseβπ ) β§ π¦ β (Baseβπ ))) β (π₯(+gβπ )π¦) = (π₯(+gβπ)π¦)) |
24 | eqid 2732 | . . . . . . . 8 β’ (.rβπ ) = (.rβπ ) | |
25 | 5, 24 | tngmulr 24155 | . . . . . . 7 β’ (πΉ β π΄ β (.rβπ ) = (.rβπ)) |
26 | 25 | oveqdr 7436 | . . . . . 6 β’ ((πΉ β π΄ β§ (π₯ β (Baseβπ ) β§ π¦ β (Baseβπ ))) β (π₯(.rβπ )π¦) = (π₯(.rβπ)π¦)) |
27 | 19, 20, 23, 26 | abvpropd 20449 | . . . . 5 β’ (πΉ β π΄ β (AbsValβπ ) = (AbsValβπ)) |
28 | 1, 27 | eqtrid 2784 | . . . 4 β’ (πΉ β π΄ β π΄ = (AbsValβπ)) |
29 | 18, 28 | eleq12d 2827 | . . 3 β’ (πΉ β π΄ β (πΉ β π΄ β (normβπ) β (AbsValβπ))) |
30 | 29 | ibi 266 | . 2 β’ (πΉ β π΄ β (normβπ) β (AbsValβπ)) |
31 | eqid 2732 | . . 3 β’ (normβπ) = (normβπ) | |
32 | eqid 2732 | . . 3 β’ (AbsValβπ) = (AbsValβπ) | |
33 | 31, 32 | isnrg 24176 | . 2 β’ (π β NrmRing β (π β NrmGrp β§ (normβπ) β (AbsValβπ))) |
34 | 15, 30, 33 | sylanbrc 583 | 1 β’ (πΉ β π΄ β π β NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β ccom 5680 βΆwf 6539 βcfv 6543 (class class class)co 7408 βcr 11108 Basecbs 17143 +gcplusg 17196 .rcmulr 17197 distcds 17205 Grpcgrp 18818 -gcsg 18820 Ringcrg 20055 AbsValcabv 20423 Metcmet 20929 normcnm 24084 NrmGrpcngp 24085 toNrmGrp ctng 24086 NrmRingcnrg 24087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ico 13329 df-seq 13966 df-exp 14027 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-mulr 17210 df-tset 17215 df-ds 17218 df-rest 17367 df-topn 17368 df-0g 17386 df-topgen 17388 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-sbg 18823 df-mgp 19987 df-ur 20004 df-ring 20057 df-abv 20424 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-xms 23825 df-ms 23826 df-nm 24090 df-ngp 24091 df-tng 24092 df-nrg 24093 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |