| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tngnrg | Structured version Visualization version GIF version | ||
| Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| tngnrg.t | ⊢ 𝑇 = (𝑅 toNrmGrp 𝐹) |
| tngnrg.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| Ref | Expression |
|---|---|
| tngnrg | ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngnrg.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 2 | 1 | abvrcl 20698 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| 3 | ringgrp 20123 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Grp) |
| 5 | tngnrg.t | . . . . 5 ⊢ 𝑇 = (𝑅 toNrmGrp 𝐹) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 7 | 5, 6 | tngds 24534 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∘ (-g‘𝑅)) = (dist‘𝑇)) |
| 8 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | 8, 1, 6 | abvmet 24461 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∘ (-g‘𝑅)) ∈ (Met‘(Base‘𝑅))) |
| 10 | 7, 9 | eqeltrrd 2829 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (dist‘𝑇) ∈ (Met‘(Base‘𝑅))) |
| 11 | 1, 8 | abvf 20700 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐹:(Base‘𝑅)⟶ℝ) |
| 12 | eqid 2729 | . . . . 5 ⊢ (dist‘𝑇) = (dist‘𝑇) | |
| 13 | 5, 8, 12 | tngngp2 24538 | . . . 4 ⊢ (𝐹:(Base‘𝑅)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅))))) |
| 14 | 11, 13 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅))))) |
| 15 | 4, 10, 14 | mpbir2and 713 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmGrp) |
| 16 | reex 11100 | . . . . . 6 ⊢ ℝ ∈ V | |
| 17 | 5, 8, 16 | tngnm 24537 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐹:(Base‘𝑅)⟶ℝ) → 𝐹 = (norm‘𝑇)) |
| 18 | 4, 11, 17 | syl2anc 584 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐹 = (norm‘𝑇)) |
| 19 | eqidd 2730 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → (Base‘𝑅) = (Base‘𝑅)) | |
| 20 | 5, 8 | tngbas 24527 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → (Base‘𝑅) = (Base‘𝑇)) |
| 21 | eqid 2729 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 22 | 5, 21 | tngplusg 24528 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → (+g‘𝑅) = (+g‘𝑇)) |
| 23 | 22 | oveqdr 7377 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑇)𝑦)) |
| 24 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 25 | 5, 24 | tngmulr 24530 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → (.r‘𝑅) = (.r‘𝑇)) |
| 26 | 25 | oveqdr 7377 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑇)𝑦)) |
| 27 | 19, 20, 23, 26 | abvpropd 20720 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → (AbsVal‘𝑅) = (AbsVal‘𝑇)) |
| 28 | 1, 27 | eqtrid 2776 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐴 = (AbsVal‘𝑇)) |
| 29 | 18, 28 | eleq12d 2822 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ 𝐴 ↔ (norm‘𝑇) ∈ (AbsVal‘𝑇))) |
| 30 | 29 | ibi 267 | . 2 ⊢ (𝐹 ∈ 𝐴 → (norm‘𝑇) ∈ (AbsVal‘𝑇)) |
| 31 | eqid 2729 | . . 3 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
| 32 | eqid 2729 | . . 3 ⊢ (AbsVal‘𝑇) = (AbsVal‘𝑇) | |
| 33 | 31, 32 | isnrg 24546 | . 2 ⊢ (𝑇 ∈ NrmRing ↔ (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) ∈ (AbsVal‘𝑇))) |
| 34 | 15, 30, 33 | sylanbrc 583 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∘ ccom 5623 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 distcds 17170 Grpcgrp 18812 -gcsg 18814 Ringcrg 20118 AbsValcabv 20693 Metcmet 21247 normcnm 24462 NrmGrpcngp 24463 toNrmGrp ctng 24464 NrmRingcnrg 24465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ico 13254 df-seq 13909 df-exp 13969 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-tset 17180 df-ds 17183 df-rest 17326 df-topn 17327 df-0g 17345 df-topgen 17347 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-abv 20694 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-xms 24206 df-ms 24207 df-nm 24468 df-ngp 24469 df-tng 24470 df-nrg 24471 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |