MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngnrg Structured version   Visualization version   GIF version

Theorem tngnrg 24589
Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngnrg.t 𝑇 = (𝑅 toNrmGrp 𝐹)
tngnrg.a 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
tngnrg (𝐹𝐴𝑇 ∈ NrmRing)

Proof of Theorem tngnrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngnrg.a . . . . 5 𝐴 = (AbsVal‘𝑅)
21abvrcl 20728 . . . 4 (𝐹𝐴𝑅 ∈ Ring)
3 ringgrp 20156 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
42, 3syl 17 . . 3 (𝐹𝐴𝑅 ∈ Grp)
5 tngnrg.t . . . . 5 𝑇 = (𝑅 toNrmGrp 𝐹)
6 eqid 2731 . . . . 5 (-g𝑅) = (-g𝑅)
75, 6tngds 24563 . . . 4 (𝐹𝐴 → (𝐹 ∘ (-g𝑅)) = (dist‘𝑇))
8 eqid 2731 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
98, 1, 6abvmet 24490 . . . 4 (𝐹𝐴 → (𝐹 ∘ (-g𝑅)) ∈ (Met‘(Base‘𝑅)))
107, 9eqeltrrd 2832 . . 3 (𝐹𝐴 → (dist‘𝑇) ∈ (Met‘(Base‘𝑅)))
111, 8abvf 20730 . . . 4 (𝐹𝐴𝐹:(Base‘𝑅)⟶ℝ)
12 eqid 2731 . . . . 5 (dist‘𝑇) = (dist‘𝑇)
135, 8, 12tngngp2 24567 . . . 4 (𝐹:(Base‘𝑅)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅)))))
1411, 13syl 17 . . 3 (𝐹𝐴 → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅)))))
154, 10, 14mpbir2and 713 . 2 (𝐹𝐴𝑇 ∈ NrmGrp)
16 reex 11097 . . . . . 6 ℝ ∈ V
175, 8, 16tngnm 24566 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐹:(Base‘𝑅)⟶ℝ) → 𝐹 = (norm‘𝑇))
184, 11, 17syl2anc 584 . . . 4 (𝐹𝐴𝐹 = (norm‘𝑇))
19 eqidd 2732 . . . . . 6 (𝐹𝐴 → (Base‘𝑅) = (Base‘𝑅))
205, 8tngbas 24556 . . . . . 6 (𝐹𝐴 → (Base‘𝑅) = (Base‘𝑇))
21 eqid 2731 . . . . . . . 8 (+g𝑅) = (+g𝑅)
225, 21tngplusg 24557 . . . . . . 7 (𝐹𝐴 → (+g𝑅) = (+g𝑇))
2322oveqdr 7374 . . . . . 6 ((𝐹𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑇)𝑦))
24 eqid 2731 . . . . . . . 8 (.r𝑅) = (.r𝑅)
255, 24tngmulr 24559 . . . . . . 7 (𝐹𝐴 → (.r𝑅) = (.r𝑇))
2625oveqdr 7374 . . . . . 6 ((𝐹𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑇)𝑦))
2719, 20, 23, 26abvpropd 20750 . . . . 5 (𝐹𝐴 → (AbsVal‘𝑅) = (AbsVal‘𝑇))
281, 27eqtrid 2778 . . . 4 (𝐹𝐴𝐴 = (AbsVal‘𝑇))
2918, 28eleq12d 2825 . . 3 (𝐹𝐴 → (𝐹𝐴 ↔ (norm‘𝑇) ∈ (AbsVal‘𝑇)))
3029ibi 267 . 2 (𝐹𝐴 → (norm‘𝑇) ∈ (AbsVal‘𝑇))
31 eqid 2731 . . 3 (norm‘𝑇) = (norm‘𝑇)
32 eqid 2731 . . 3 (AbsVal‘𝑇) = (AbsVal‘𝑇)
3331, 32isnrg 24575 . 2 (𝑇 ∈ NrmRing ↔ (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) ∈ (AbsVal‘𝑇)))
3415, 30, 33sylanbrc 583 1 (𝐹𝐴𝑇 ∈ NrmRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  distcds 17170  Grpcgrp 18846  -gcsg 18848  Ringcrg 20151  AbsValcabv 20723  Metcmet 21277  normcnm 24491  NrmGrpcngp 24492   toNrmGrp ctng 24493  NrmRingcnrg 24494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ico 13251  df-seq 13909  df-exp 13969  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-tset 17180  df-ds 17183  df-rest 17326  df-topn 17327  df-0g 17345  df-topgen 17347  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-abv 20724  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-xms 24235  df-ms 24236  df-nm 24497  df-ngp 24498  df-tng 24499  df-nrg 24500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator