![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tngnrg | Structured version Visualization version GIF version |
Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
tngnrg.t | ⊢ 𝑇 = (𝑅 toNrmGrp 𝐹) |
tngnrg.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
tngnrg | ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tngnrg.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | 1 | abvrcl 20830 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
3 | ringgrp 20255 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Grp) |
5 | tngnrg.t | . . . . 5 ⊢ 𝑇 = (𝑅 toNrmGrp 𝐹) | |
6 | eqid 2734 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
7 | 5, 6 | tngds 24683 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∘ (-g‘𝑅)) = (dist‘𝑇)) |
8 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 8, 1, 6 | abvmet 24603 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∘ (-g‘𝑅)) ∈ (Met‘(Base‘𝑅))) |
10 | 7, 9 | eqeltrrd 2839 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (dist‘𝑇) ∈ (Met‘(Base‘𝑅))) |
11 | 1, 8 | abvf 20832 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐹:(Base‘𝑅)⟶ℝ) |
12 | eqid 2734 | . . . . 5 ⊢ (dist‘𝑇) = (dist‘𝑇) | |
13 | 5, 8, 12 | tngngp2 24688 | . . . 4 ⊢ (𝐹:(Base‘𝑅)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅))))) |
14 | 11, 13 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅))))) |
15 | 4, 10, 14 | mpbir2and 713 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmGrp) |
16 | reex 11243 | . . . . . 6 ⊢ ℝ ∈ V | |
17 | 5, 8, 16 | tngnm 24687 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐹:(Base‘𝑅)⟶ℝ) → 𝐹 = (norm‘𝑇)) |
18 | 4, 11, 17 | syl2anc 584 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐹 = (norm‘𝑇)) |
19 | eqidd 2735 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → (Base‘𝑅) = (Base‘𝑅)) | |
20 | 5, 8 | tngbas 24670 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → (Base‘𝑅) = (Base‘𝑇)) |
21 | eqid 2734 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
22 | 5, 21 | tngplusg 24672 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → (+g‘𝑅) = (+g‘𝑇)) |
23 | 22 | oveqdr 7458 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑇)𝑦)) |
24 | eqid 2734 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
25 | 5, 24 | tngmulr 24675 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → (.r‘𝑅) = (.r‘𝑇)) |
26 | 25 | oveqdr 7458 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑇)𝑦)) |
27 | 19, 20, 23, 26 | abvpropd 20852 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → (AbsVal‘𝑅) = (AbsVal‘𝑇)) |
28 | 1, 27 | eqtrid 2786 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐴 = (AbsVal‘𝑇)) |
29 | 18, 28 | eleq12d 2832 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ 𝐴 ↔ (norm‘𝑇) ∈ (AbsVal‘𝑇))) |
30 | 29 | ibi 267 | . 2 ⊢ (𝐹 ∈ 𝐴 → (norm‘𝑇) ∈ (AbsVal‘𝑇)) |
31 | eqid 2734 | . . 3 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
32 | eqid 2734 | . . 3 ⊢ (AbsVal‘𝑇) = (AbsVal‘𝑇) | |
33 | 31, 32 | isnrg 24696 | . 2 ⊢ (𝑇 ∈ NrmRing ↔ (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) ∈ (AbsVal‘𝑇))) |
34 | 15, 30, 33 | sylanbrc 583 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∘ ccom 5692 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 Basecbs 17244 +gcplusg 17297 .rcmulr 17298 distcds 17306 Grpcgrp 18963 -gcsg 18965 Ringcrg 20250 AbsValcabv 20825 Metcmet 21367 normcnm 24604 NrmGrpcngp 24605 toNrmGrp ctng 24606 NrmRingcnrg 24607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ico 13389 df-seq 14039 df-exp 14099 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-mulr 17311 df-tset 17316 df-ds 17319 df-rest 17468 df-topn 17469 df-0g 17487 df-topgen 17489 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-sbg 18968 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-abv 20826 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-xms 24345 df-ms 24346 df-nm 24610 df-ngp 24611 df-tng 24612 df-nrg 24613 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |