![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brabg | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
opelopabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
opelopabg.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
brabg.5 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brabg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | opelopabg.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | sylan9bb 509 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒)) |
4 | brabg.5 | . 2 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
5 | 3, 4 | brabga 5553 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 |
This theorem is referenced by: brab 5562 ideqg 5876 brcnvg 5904 f1owe 7389 brrpssg 7760 soseq 8200 breng 9012 brenOLD 9014 brdom2g 9015 brdomgOLD 9017 brwdom 9636 brttrcl 9782 ltprord 11099 shftfib 15121 efgrelexlema 19791 isref 23538 sltval 27710 brsslt 27848 lrrecval 27990 istrkgld 28485 islnopp 28765 axcontlem5 29001 cmbr 31616 leopg 32154 cvbr 32314 mdbr 32326 dmdbr 32331 isfne 36305 brabg2 37677 isriscg 37944 brssr 38457 lcvbr 38977 bropabg 43285 |
Copyright terms: Public domain | W3C validator |