MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabg Structured version   Visualization version   GIF version

Theorem brabg 5128
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabg.1 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabg.2 (𝑦 = 𝐵 → (𝜓𝜒))
brabg.5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabg ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brabg
StepHypRef Expression
1 opelopabg.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
2 opelopabg.2 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
31, 2sylan9bb 495 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒))
4 brabg.5 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
53, 4brabga 5123 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145   class class class wbr 4787  {copab 4847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rab 3070  df-v 3353  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-opab 4848
This theorem is referenced by:  brab  5132  ideqg  5413  opelcnvg  5441  f1owe  6747  brrpssg  7087  bren  8119  brdomg  8120  brwdom  8629  ltprord  10055  shftfib  14021  efgrelexlema  18370  isref  21534  istrkgld  25580  islnopp  25853  axcontlem5  26070  cmbr  28784  leopg  29322  cvbr  29482  mdbr  29494  dmdbr  29499  soseq  32092  sltval  32138  brsslt  32238  isfne  32672  brabg2  33843  isriscg  34116  brssr  34594  lcvbr  34831
  Copyright terms: Public domain W3C validator