| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brabg | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| opelopabg.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| brabg.5 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brabg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | opelopabg.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | sylan9bb 509 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒)) |
| 4 | brabg.5 | . 2 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 5 | 3, 4 | brabga 5497 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 {copab 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 |
| This theorem is referenced by: brab 5506 ideqg 5818 brcnvg 5846 f1owe 7331 brrpssg 7704 soseq 8141 breng 8930 brdom2g 8932 brwdom 9527 brttrcl 9673 ltprord 10990 shftfib 15045 efgrelexlema 19686 isref 23403 sltval 27566 brsslt 27704 lrrecval 27853 istrkgld 28393 islnopp 28673 axcontlem5 28902 cmbr 31520 leopg 32058 cvbr 32218 mdbr 32230 dmdbr 32235 isfne 36334 brabg2 37718 isriscg 37985 brssr 38499 lcvbr 39021 bropabg 43319 |
| Copyright terms: Public domain | W3C validator |