Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brabg | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
opelopabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
opelopabg.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
brabg.5 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brabg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | opelopabg.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | sylan9bb 510 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒)) |
4 | brabg.5 | . 2 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
5 | 3, 4 | brabga 5448 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 class class class wbr 5075 {copab 5137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 |
This theorem is referenced by: brab 5457 ideqg 5763 brcnvg 5791 f1owe 7233 brrpssg 7587 breng 8751 brenOLD 8753 brdom2g 8754 brdomgOLD 8756 brwdom 9335 brttrcl 9480 ltprord 10795 shftfib 14792 efgrelexlema 19364 isref 22669 istrkgld 26829 islnopp 27109 axcontlem5 27345 cmbr 29955 leopg 30493 cvbr 30653 mdbr 30665 dmdbr 30670 soseq 33812 sltval 33859 brsslt 33989 lrrecval 34105 isfne 34537 brabg2 35883 isriscg 36151 brssr 36626 lcvbr 37042 |
Copyright terms: Public domain | W3C validator |