MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabg Structured version   Visualization version   GIF version

Theorem brabg 5482
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabg.1 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabg.2 (𝑦 = 𝐵 → (𝜓𝜒))
brabg.5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabg ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brabg
StepHypRef Expression
1 opelopabg.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
2 opelopabg.2 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
31, 2sylan9bb 509 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒))
4 brabg.5 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
53, 4brabga 5477 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  {copab 5154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155
This theorem is referenced by:  brab  5486  ideqg  5794  brcnvg  5822  f1owe  7290  brrpssg  7661  soseq  8092  breng  8881  brdom2g  8883  brwdom  9459  brttrcl  9609  ltprord  10924  shftfib  14979  efgrelexlema  19628  isref  23394  sltval  27557  brsslt  27696  lrrecval  27853  istrkgld  28408  islnopp  28688  axcontlem5  28917  cmbr  31532  leopg  32070  cvbr  32230  mdbr  32242  dmdbr  32247  isfne  36333  brabg2  37717  isriscg  37984  brssr  38498  lcvbr  39020  bropabg  43316
  Copyright terms: Public domain W3C validator