MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabg Structured version   Visualization version   GIF version

Theorem brabg 5420
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabg.1 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabg.2 (𝑦 = 𝐵 → (𝜓𝜒))
brabg.5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabg ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brabg
StepHypRef Expression
1 opelopabg.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
2 opelopabg.2 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
31, 2sylan9bb 513 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒))
4 brabg.5 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
53, 4brabga 5415 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110   class class class wbr 5053  {copab 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116
This theorem is referenced by:  brab  5424  ideqg  5720  brcnvg  5748  f1owe  7162  brrpssg  7513  breng  8635  brenOLD  8637  brdomg  8638  brwdom  9183  ltprord  10644  shftfib  14635  efgrelexlema  19139  isref  22406  istrkgld  26550  islnopp  26830  axcontlem5  27059  cmbr  29665  leopg  30203  cvbr  30363  mdbr  30375  dmdbr  30380  brttrcl  33512  soseq  33540  sltval  33587  brsslt  33717  lrrecval  33833  isfne  34265  brabg2  35611  isriscg  35879  brssr  36356  lcvbr  36772
  Copyright terms: Public domain W3C validator