MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0vtxrusgr Structured version   Visualization version   GIF version

Theorem 0vtxrusgr 29556
Description: A graph with no vertices and an empty edge function is a k-regular simple graph for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Assertion
Ref Expression
0vtxrusgr ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘)
Distinct variable groups:   𝑘,𝐺   𝑘,𝑊

Proof of Theorem 0vtxrusgr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 usgr0v 29219 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph)
21adantr 480 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 ∈ USGraph)
3 0vtxrgr 29555 . . . . . 6 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑣 ∈ ℕ0* 𝐺 RegGraph 𝑣)
4 breq2 5093 . . . . . . 7 (𝑣 = 𝑘 → (𝐺 RegGraph 𝑣𝐺 RegGraph 𝑘))
54rspccv 3569 . . . . . 6 (∀𝑣 ∈ ℕ0* 𝐺 RegGraph 𝑣 → (𝑘 ∈ ℕ0*𝐺 RegGraph 𝑘))
63, 5syl 17 . . . . 5 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝑘 ∈ ℕ0*𝐺 RegGraph 𝑘))
763adant3 1132 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → (𝑘 ∈ ℕ0*𝐺 RegGraph 𝑘))
87imp 406 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 RegGraph 𝑘)
9 isrusgr 29540 . . . 4 ((𝐺𝑊𝑘 ∈ ℕ0*) → (𝐺 RegUSGraph 𝑘 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝑘)))
1093ad2antl1 1186 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → (𝐺 RegUSGraph 𝑘 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝑘)))
112, 8, 10mpbir2and 713 . 2 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 RegUSGraph 𝑘)
1211ralrimiva 3124 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  c0 4280   class class class wbr 5089  cfv 6481  0*cxnn0 12454  Vtxcvtx 28974  iEdgciedg 28975  USGraphcusgr 29127   RegGraph crgr 29534   RegUSGraph crusgr 29535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-i2m1 11074  ax-1ne0 11075  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-2 12188  df-uhgr 29036  df-upgr 29060  df-uspgr 29128  df-usgr 29129  df-rgr 29536  df-rusgr 29537
This theorem is referenced by:  0uhgrrusgr  29557  0grrusgr  29558
  Copyright terms: Public domain W3C validator