MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0vtxrusgr Structured version   Visualization version   GIF version

Theorem 0vtxrusgr 29523
Description: A graph with no vertices and an empty edge function is a k-regular simple graph for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Assertion
Ref Expression
0vtxrusgr ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘)
Distinct variable groups:   𝑘,𝐺   𝑘,𝑊

Proof of Theorem 0vtxrusgr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 usgr0v 29186 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph)
21adantr 480 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 ∈ USGraph)
3 0vtxrgr 29522 . . . . . 6 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑣 ∈ ℕ0* 𝐺 RegGraph 𝑣)
4 breq2 5127 . . . . . . 7 (𝑣 = 𝑘 → (𝐺 RegGraph 𝑣𝐺 RegGraph 𝑘))
54rspccv 3602 . . . . . 6 (∀𝑣 ∈ ℕ0* 𝐺 RegGraph 𝑣 → (𝑘 ∈ ℕ0*𝐺 RegGraph 𝑘))
63, 5syl 17 . . . . 5 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝑘 ∈ ℕ0*𝐺 RegGraph 𝑘))
763adant3 1132 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → (𝑘 ∈ ℕ0*𝐺 RegGraph 𝑘))
87imp 406 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 RegGraph 𝑘)
9 isrusgr 29507 . . . 4 ((𝐺𝑊𝑘 ∈ ℕ0*) → (𝐺 RegUSGraph 𝑘 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝑘)))
1093ad2antl1 1185 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → (𝐺 RegUSGraph 𝑘 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝑘)))
112, 8, 10mpbir2and 713 . 2 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 RegUSGraph 𝑘)
1211ralrimiva 3133 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  c0 4313   class class class wbr 5123  cfv 6541  0*cxnn0 12582  Vtxcvtx 28941  iEdgciedg 28942  USGraphcusgr 29094   RegGraph crgr 29501   RegUSGraph crusgr 29502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-i2m1 11205  ax-1ne0 11206  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-2 12311  df-uhgr 29003  df-upgr 29027  df-uspgr 29095  df-usgr 29096  df-rgr 29503  df-rusgr 29504
This theorem is referenced by:  0uhgrrusgr  29524  0grrusgr  29525
  Copyright terms: Public domain W3C validator