MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrusgr0 Structured version   Visualization version   GIF version

Theorem isrusgr0 27608
Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrusgr0.v 𝑉 = (Vtx‘𝐺)
isrusgr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
isrusgr0 ((𝐺𝑊𝐾𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hints:   𝐷(𝑣)   𝑉(𝑣)   𝑊(𝑣)   𝑍(𝑣)

Proof of Theorem isrusgr0
StepHypRef Expression
1 isrusgr 27603 . 2 ((𝐺𝑊𝐾𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))
2 isrusgr0.v . . . . 5 𝑉 = (Vtx‘𝐺)
3 isrusgr0.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
42, 3isrgr 27601 . . . 4 ((𝐺𝑊𝐾𝑍) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
54anbi2d 632 . . 3 ((𝐺𝑊𝐾𝑍) → ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))))
6 3anass 1097 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
75, 6bitr4di 292 . 2 ((𝐺𝑊𝐾𝑍) → ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
81, 7bitrd 282 1 ((𝐺𝑊𝐾𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051   class class class wbr 5039  cfv 6358  0*cxnn0 12127  Vtxcvtx 27041  USGraphcusgr 27194  VtxDegcvtxdg 27507   RegGraph crgr 27597   RegUSGraph crusgr 27598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-iota 6316  df-fv 6366  df-rgr 27599  df-rusgr 27600
This theorem is referenced by:  usgreqdrusgr  27610  cusgrrusgr  27623  rgrusgrprc  27631  rusgrprc  27632
  Copyright terms: Public domain W3C validator