MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrusgr0 Structured version   Visualization version   GIF version

Theorem isrusgr0 29090
Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrusgr0.v 𝑉 = (Vtxβ€˜πΊ)
isrusgr0.d 𝐷 = (VtxDegβ€˜πΊ)
Assertion
Ref Expression
isrusgr0 ((𝐺 ∈ π‘Š ∧ 𝐾 ∈ 𝑍) β†’ (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ β„•0* ∧ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hints:   𝐷(𝑣)   𝑉(𝑣)   π‘Š(𝑣)   𝑍(𝑣)

Proof of Theorem isrusgr0
StepHypRef Expression
1 isrusgr 29085 . 2 ((𝐺 ∈ π‘Š ∧ 𝐾 ∈ 𝑍) β†’ (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))
2 isrusgr0.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
3 isrusgr0.d . . . . 5 𝐷 = (VtxDegβ€˜πΊ)
42, 3isrgr 29083 . . . 4 ((𝐺 ∈ π‘Š ∧ 𝐾 ∈ 𝑍) β†’ (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ β„•0* ∧ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾)))
54anbi2d 627 . . 3 ((𝐺 ∈ π‘Š ∧ 𝐾 ∈ 𝑍) β†’ ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ β„•0* ∧ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾))))
6 3anass 1093 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ β„•0* ∧ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ β„•0* ∧ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾)))
75, 6bitr4di 288 . 2 ((𝐺 ∈ π‘Š ∧ 𝐾 ∈ 𝑍) β†’ ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ β„•0* ∧ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾)))
81, 7bitrd 278 1 ((𝐺 ∈ π‘Š ∧ 𝐾 ∈ 𝑍) β†’ (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ β„•0* ∧ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   class class class wbr 5147  β€˜cfv 6542  β„•0*cxnn0 12548  Vtxcvtx 28523  USGraphcusgr 28676  VtxDegcvtxdg 28989   RegGraph crgr 29079   RegUSGraph crusgr 29080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-iota 6494  df-fv 6550  df-rgr 29081  df-rusgr 29082
This theorem is referenced by:  usgreqdrusgr  29092  cusgrrusgr  29105  rgrusgrprc  29113  rusgrprc  29114
  Copyright terms: Public domain W3C validator