![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrusgr0 | Structured version Visualization version GIF version |
Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
isrusgr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isrusgr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
isrusgr0 | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺RegUSGraph𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrusgr 27040 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺RegUSGraph𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺RegGraph𝐾))) | |
2 | isrusgr0.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | isrusgr0.d | . . . . 5 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
4 | 2, 3 | isrgr 27038 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺RegGraph𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
5 | 4 | anbi2d 619 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → ((𝐺 ∈ USGraph ∧ 𝐺RegGraph𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)))) |
6 | 3anass 1076 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) | |
7 | 5, 6 | syl6bbr 281 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → ((𝐺 ∈ USGraph ∧ 𝐺RegGraph𝐾) ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
8 | 1, 7 | bitrd 271 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺RegUSGraph𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ∀wral 3082 class class class wbr 4923 ‘cfv 6182 ℕ0*cxnn0 11773 Vtxcvtx 26478 USGraphcusgr 26631 VtxDegcvtxdg 26944 RegGraphcrgr 27034 RegUSGraphcrusgr 27035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-iota 6146 df-fv 6190 df-rgr 27036 df-rusgr 27037 |
This theorem is referenced by: usgreqdrusgr 27047 cusgrrusgr 27060 rgrusgrprc 27068 rusgrprc 27069 |
Copyright terms: Public domain | W3C validator |