MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrusgr0 Structured version   Visualization version   GIF version

Theorem isrusgr0 29501
Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrusgr0.v 𝑉 = (Vtx‘𝐺)
isrusgr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
isrusgr0 ((𝐺𝑊𝐾𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hints:   𝐷(𝑣)   𝑉(𝑣)   𝑊(𝑣)   𝑍(𝑣)

Proof of Theorem isrusgr0
StepHypRef Expression
1 isrusgr 29496 . 2 ((𝐺𝑊𝐾𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))
2 isrusgr0.v . . . . 5 𝑉 = (Vtx‘𝐺)
3 isrusgr0.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
42, 3isrgr 29494 . . . 4 ((𝐺𝑊𝐾𝑍) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
54anbi2d 630 . . 3 ((𝐺𝑊𝐾𝑍) → ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))))
6 3anass 1094 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
75, 6bitr4di 289 . 2 ((𝐺𝑊𝐾𝑍) → ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
81, 7bitrd 279 1 ((𝐺𝑊𝐾𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  cfv 6514  0*cxnn0 12522  Vtxcvtx 28930  USGraphcusgr 29083  VtxDegcvtxdg 29400   RegGraph crgr 29490   RegUSGraph crusgr 29491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-iota 6467  df-fv 6522  df-rgr 29492  df-rusgr 29493
This theorem is referenced by:  usgreqdrusgr  29503  cusgrrusgr  29516  rgrusgrprc  29524  rusgrprc  29525
  Copyright terms: Public domain W3C validator