![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrusgr0 | Structured version Visualization version GIF version |
Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
isrusgr0.v | β’ π = (VtxβπΊ) |
isrusgr0.d | β’ π· = (VtxDegβπΊ) |
Ref | Expression |
---|---|
isrusgr0 | β’ ((πΊ β π β§ πΎ β π) β (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (π·βπ£) = πΎ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrusgr 29085 | . 2 β’ ((πΊ β π β§ πΎ β π) β (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΊ RegGraph πΎ))) | |
2 | isrusgr0.v | . . . . 5 β’ π = (VtxβπΊ) | |
3 | isrusgr0.d | . . . . 5 β’ π· = (VtxDegβπΊ) | |
4 | 2, 3 | isrgr 29083 | . . . 4 β’ ((πΊ β π β§ πΎ β π) β (πΊ RegGraph πΎ β (πΎ β β0* β§ βπ£ β π (π·βπ£) = πΎ))) |
5 | 4 | anbi2d 627 | . . 3 β’ ((πΊ β π β§ πΎ β π) β ((πΊ β USGraph β§ πΊ RegGraph πΎ) β (πΊ β USGraph β§ (πΎ β β0* β§ βπ£ β π (π·βπ£) = πΎ)))) |
6 | 3anass 1093 | . . 3 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (π·βπ£) = πΎ) β (πΊ β USGraph β§ (πΎ β β0* β§ βπ£ β π (π·βπ£) = πΎ))) | |
7 | 5, 6 | bitr4di 288 | . 2 β’ ((πΊ β π β§ πΎ β π) β ((πΊ β USGraph β§ πΊ RegGraph πΎ) β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (π·βπ£) = πΎ))) |
8 | 1, 7 | bitrd 278 | 1 β’ ((πΊ β π β§ πΎ β π) β (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (π·βπ£) = πΎ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βwral 3059 class class class wbr 5147 βcfv 6542 β0*cxnn0 12548 Vtxcvtx 28523 USGraphcusgr 28676 VtxDegcvtxdg 28989 RegGraph crgr 29079 RegUSGraph crusgr 29080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-iota 6494 df-fv 6550 df-rgr 29081 df-rusgr 29082 |
This theorem is referenced by: usgreqdrusgr 29092 cusgrrusgr 29105 rgrusgrprc 29113 rusgrprc 29114 |
Copyright terms: Public domain | W3C validator |