MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrusgr0 Structured version   Visualization version   GIF version

Theorem isrusgr0 27350
Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrusgr0.v 𝑉 = (Vtx‘𝐺)
isrusgr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
isrusgr0 ((𝐺𝑊𝐾𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hints:   𝐷(𝑣)   𝑉(𝑣)   𝑊(𝑣)   𝑍(𝑣)

Proof of Theorem isrusgr0
StepHypRef Expression
1 isrusgr 27345 . 2 ((𝐺𝑊𝐾𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))
2 isrusgr0.v . . . . 5 𝑉 = (Vtx‘𝐺)
3 isrusgr0.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
42, 3isrgr 27343 . . . 4 ((𝐺𝑊𝐾𝑍) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
54anbi2d 630 . . 3 ((𝐺𝑊𝐾𝑍) → ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))))
6 3anass 1091 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
75, 6syl6bbr 291 . 2 ((𝐺𝑊𝐾𝑍) → ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
81, 7bitrd 281 1 ((𝐺𝑊𝐾𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140   class class class wbr 5068  cfv 6357  0*cxnn0 11970  Vtxcvtx 26783  USGraphcusgr 26936  VtxDegcvtxdg 27249   RegGraph crgr 27339   RegUSGraph crusgr 27340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-iota 6316  df-fv 6365  df-rgr 27341  df-rusgr 27342
This theorem is referenced by:  usgreqdrusgr  27352  cusgrrusgr  27365  rgrusgrprc  27373  rusgrprc  27374
  Copyright terms: Public domain W3C validator