![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issetid | Structured version Visualization version GIF version |
Description: Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
issetid | ⊢ (𝐴 ∈ V ↔ 𝐴 I 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ididg 5859 | . 2 ⊢ (𝐴 ∈ V → 𝐴 I 𝐴) | |
2 | reli 5831 | . . 3 ⊢ Rel I | |
3 | 2 | brrelex1i 5737 | . 2 ⊢ (𝐴 I 𝐴 → 𝐴 ∈ V) |
4 | 1, 3 | impbii 208 | 1 ⊢ (𝐴 ∈ V ↔ 𝐴 I 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2098 Vcvv 3461 class class class wbr 5152 I cid 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pr 5432 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-id 5579 df-xp 5687 df-rel 5688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |