Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issetid | Structured version Visualization version GIF version |
Description: Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
issetid | ⊢ (𝐴 ∈ V ↔ 𝐴 I 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ididg 5796 | . 2 ⊢ (𝐴 ∈ V → 𝐴 I 𝐴) | |
2 | reli 5769 | . . 3 ⊢ Rel I | |
3 | 2 | brrelex1i 5675 | . 2 ⊢ (𝐴 I 𝐴 → 𝐴 ∈ V) |
4 | 1, 3 | impbii 208 | 1 ⊢ (𝐴 ∈ V ↔ 𝐴 I 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2105 Vcvv 3441 class class class wbr 5093 I cid 5518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-br 5094 df-opab 5156 df-id 5519 df-xp 5627 df-rel 5628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |