MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issetid Structured version   Visualization version   GIF version

Theorem issetid 5868
Description: Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
issetid (𝐴 ∈ V ↔ 𝐴 I 𝐴)

Proof of Theorem issetid
StepHypRef Expression
1 ididg 5867 . 2 (𝐴 ∈ V → 𝐴 I 𝐴)
2 reli 5839 . . 3 Rel I
32brrelex1i 5745 . 2 (𝐴 I 𝐴𝐴 ∈ V)
41, 3impbii 209 1 (𝐴 ∈ V ↔ 𝐴 I 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2106  Vcvv 3478   class class class wbr 5148   I cid 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator