MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issetid Structured version   Visualization version   GIF version

Theorem issetid 5797
Description: Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
issetid (𝐴 ∈ V ↔ 𝐴 I 𝐴)

Proof of Theorem issetid
StepHypRef Expression
1 ididg 5796 . 2 (𝐴 ∈ V → 𝐴 I 𝐴)
2 reli 5769 . . 3 Rel I
32brrelex1i 5675 . 2 (𝐴 I 𝐴𝐴 ∈ V)
41, 3impbii 208 1 (𝐴 ∈ V ↔ 𝐴 I 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2105  Vcvv 3441   class class class wbr 5093   I cid 5518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-br 5094  df-opab 5156  df-id 5519  df-xp 5627  df-rel 5628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator