| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issetid | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| issetid | ⊢ (𝐴 ∈ V ↔ 𝐴 I 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ididg 5788 | . 2 ⊢ (𝐴 ∈ V → 𝐴 I 𝐴) | |
| 2 | reli 5761 | . . 3 ⊢ Rel I | |
| 3 | 2 | brrelex1i 5667 | . 2 ⊢ (𝐴 I 𝐴 → 𝐴 ∈ V) |
| 4 | 1, 3 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ 𝐴 I 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 class class class wbr 5086 I cid 5505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |