![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ididg | Structured version Visualization version GIF version |
Description: A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ididg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | ideqg 5876 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 I 𝐴 ↔ 𝐴 = 𝐴)) | |
3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 I cid 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 |
This theorem is referenced by: issetid 5879 opelidres 6021 fvi 6998 |
Copyright terms: Public domain | W3C validator |