Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ididg Structured version   Visualization version   GIF version

Theorem ididg 5689
 Description: A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ididg (𝐴𝑉𝐴 I 𝐴)

Proof of Theorem ididg
StepHypRef Expression
1 eqid 2798 . 2 𝐴 = 𝐴
2 ideqg 5687 . 2 (𝐴𝑉 → (𝐴 I 𝐴𝐴 = 𝐴))
31, 2mpbiri 261 1 (𝐴𝑉𝐴 I 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111   class class class wbr 5031   I cid 5425 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5032  df-opab 5094  df-id 5426  df-xp 5526  df-rel 5527 This theorem is referenced by:  issetid  5690  opelidres  5831  fvi  6716
 Copyright terms: Public domain W3C validator