| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > it1ei | Structured version Visualization version GIF version | ||
| Description: i times 1 equals i. (Contributed by SN, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| it1ei | ⊢ (i · 1) = i |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 11062 | . 2 ⊢ i ∈ ℂ | |
| 2 | 1 | mulridi 11113 | 1 ⊢ (i · 1) = i |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11004 ici 11005 · cmul 11008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-mulcl 11065 ax-mulcom 11067 ax-mulass 11069 ax-distr 11070 ax-1rid 11073 ax-cnre 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |