![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > it1ei | Structured version Visualization version GIF version |
Description: i times 1 equals i. (Contributed by SN, 25-Apr-2025.) |
Ref | Expression |
---|---|
it1ei | ⊢ (i · 1) = i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 11205 | . 2 ⊢ i ∈ ℂ | |
2 | 1 | mulridi 11256 | 1 ⊢ (i · 1) = i |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7426 1c1 11147 ici 11148 · cmul 11151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-mulcl 11208 ax-mulcom 11210 ax-mulass 11212 ax-distr 11213 ax-1rid 11216 ax-cnre 11219 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-iota 6505 df-fv 6561 df-ov 7429 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |