![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-1rid | Structured version Visualization version GIF version |
Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 11152. Weakened from the original axiom in the form of statement in mulrid 11209, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
Ref | Expression |
---|---|
ax-1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cr 11105 | . . 3 class ℝ | |
3 | 1, 2 | wcel 2098 | . 2 wff 𝐴 ∈ ℝ |
4 | c1 11107 | . . . 4 class 1 | |
5 | cmul 11111 | . . . 4 class · | |
6 | 1, 4, 5 | co 7401 | . . 3 class (𝐴 · 1) |
7 | 6, 1 | wceq 1533 | . 2 wff (𝐴 · 1) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: mulrid 11209 mulgt1 12070 ltmulgt11 12071 lemulge11 12073 nnmulcl 12233 addltmul 12445 xmulrid 13255 2submod 13894 cshw1 14769 bezoutlem1 16478 cshwshashnsame 17036 numclwlk1lem1 30091 numclwwlk6 30112 nmopub2tALT 31631 nmfnleub2 31648 1fldgenq 32878 unitdivcld 33370 zrhre 33488 sgnmulrp2 34031 knoppcnlem4 35862 1t1e1ALT 41665 remulcan2d 41666 sn-1ne2 41668 nnadddir 41673 nnmul1com 41674 sn-00idlem1 41760 sn-00idlem3 41762 remul02 41767 remul01 41769 rei4 41785 remulinvcom 41794 remullid 41795 sn-0tie0 41801 renegmulnnass 41815 mulgt0b2d 41822 sn-0lt1 41824 3cubeslem1 41911 relexpmulnn 42949 relogbmulbexp 47435 line2xlem 47627 line2x 47628 |
Copyright terms: Public domain | W3C validator |