| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-1rid | Structured version Visualization version GIF version | ||
| Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 11074. Weakened from the original axiom in the form of statement in mulrid 11132, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
| Ref | Expression |
|---|---|
| ax-1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cr 11027 | . . 3 class ℝ | |
| 3 | 1, 2 | wcel 2109 | . 2 wff 𝐴 ∈ ℝ |
| 4 | c1 11029 | . . . 4 class 1 | |
| 5 | cmul 11033 | . . . 4 class · | |
| 6 | 1, 4, 5 | co 7353 | . . 3 class (𝐴 · 1) |
| 7 | 6, 1 | wceq 1540 | . 2 wff (𝐴 · 1) = 𝐴 |
| 8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: mulrid 11132 mulgt1OLD 12001 ltmulgt11 12002 lemulge11 12005 nnmulcl 12170 addltmul 12378 xmulrid 13199 2submod 13857 cshw1 14746 bezoutlem1 16468 cshwshashnsame 17033 numclwlk1lem1 30331 numclwwlk6 30352 nmopub2tALT 31871 nmfnleub2 31888 sgnmulrp2 32794 1fldgenq 33271 unitdivcld 33867 zrhre 33985 knoppcnlem4 36469 1t1e1ALT 42228 remulcan2d 42230 sn-1ne2 42238 nnadddir 42243 nnmul1com 42244 sn-00idlem1 42371 sn-00idlem3 42373 remul02 42378 remul01 42380 rei4 42397 remulinvcom 42406 remullid 42407 sn-0tie0 42424 renegmulnnass 42438 mulgt0b1d 42445 sn-ltmulgt11d 42447 sn-0lt1 42448 mulgt0b2d 42451 3cubeslem1 42657 relexpmulnn 43682 relogbmulbexp 48534 line2xlem 48726 line2x 48727 |
| Copyright terms: Public domain | W3C validator |