| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-1rid | Structured version Visualization version GIF version | ||
| Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 11173. Weakened from the original axiom in the form of statement in mulrid 11231, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
| Ref | Expression |
|---|---|
| ax-1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cr 11126 | . . 3 class ℝ | |
| 3 | 1, 2 | wcel 2108 | . 2 wff 𝐴 ∈ ℝ |
| 4 | c1 11128 | . . . 4 class 1 | |
| 5 | cmul 11132 | . . . 4 class · | |
| 6 | 1, 4, 5 | co 7403 | . . 3 class (𝐴 · 1) |
| 7 | 6, 1 | wceq 1540 | . 2 wff (𝐴 · 1) = 𝐴 |
| 8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: mulrid 11231 mulgt1OLD 12098 ltmulgt11 12099 lemulge11 12102 nnmulcl 12262 addltmul 12475 xmulrid 13293 2submod 13948 cshw1 14838 bezoutlem1 16556 cshwshashnsame 17121 numclwlk1lem1 30296 numclwwlk6 30317 nmopub2tALT 31836 nmfnleub2 31853 sgnmulrp2 32761 1fldgenq 33262 unitdivcld 33878 zrhre 33996 knoppcnlem4 36460 1t1e1ALT 42253 remulcan2d 42255 sn-1ne2 42262 nnadddir 42267 nnmul1com 42268 sn-00idlem1 42388 sn-00idlem3 42390 remul02 42395 remul01 42397 rei4 42413 remulinvcom 42422 remullid 42423 sn-0tie0 42429 renegmulnnass 42443 mulgt0b2d 42450 sn-ltmulgt11d 42452 sn-0lt1 42453 3cubeslem1 42654 relexpmulnn 43680 relogbmulbexp 48489 line2xlem 48681 line2x 48682 |
| Copyright terms: Public domain | W3C validator |