![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-1rid | Structured version Visualization version GIF version |
Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 11198. Weakened from the original axiom in the form of statement in mulrid 11256, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
Ref | Expression |
---|---|
ax-1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cr 11151 | . . 3 class ℝ | |
3 | 1, 2 | wcel 2105 | . 2 wff 𝐴 ∈ ℝ |
4 | c1 11153 | . . . 4 class 1 | |
5 | cmul 11157 | . . . 4 class · | |
6 | 1, 4, 5 | co 7430 | . . 3 class (𝐴 · 1) |
7 | 6, 1 | wceq 1536 | . 2 wff (𝐴 · 1) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: mulrid 11256 mulgt1OLD 12123 ltmulgt11 12124 lemulge11 12127 nnmulcl 12287 addltmul 12499 xmulrid 13317 2submod 13969 cshw1 14856 bezoutlem1 16572 cshwshashnsame 17137 numclwlk1lem1 30397 numclwwlk6 30418 nmopub2tALT 31937 nmfnleub2 31954 1fldgenq 33303 unitdivcld 33861 zrhre 33981 sgnmulrp2 34524 knoppcnlem4 36478 1t1e1ALT 42274 remulcan2d 42276 sn-1ne2 42278 nnadddir 42283 nnmul1com 42284 sn-00idlem1 42404 sn-00idlem3 42406 remul02 42411 remul01 42413 rei4 42429 remulinvcom 42438 remullid 42439 sn-0tie0 42445 renegmulnnass 42459 mulgt0b2d 42466 sn-ltmulgt11d 42468 sn-0lt1 42469 3cubeslem1 42671 relexpmulnn 43698 relogbmulbexp 48410 line2xlem 48602 line2x 48603 |
Copyright terms: Public domain | W3C validator |