| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-1rid | Structured version Visualization version GIF version | ||
| Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 11044. Weakened from the original axiom in the form of statement in mulrid 11102, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
| Ref | Expression |
|---|---|
| ax-1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cr 10997 | . . 3 class ℝ | |
| 3 | 1, 2 | wcel 2110 | . 2 wff 𝐴 ∈ ℝ |
| 4 | c1 10999 | . . . 4 class 1 | |
| 5 | cmul 11003 | . . . 4 class · | |
| 6 | 1, 4, 5 | co 7341 | . . 3 class (𝐴 · 1) |
| 7 | 6, 1 | wceq 1541 | . 2 wff (𝐴 · 1) = 𝐴 |
| 8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: mulrid 11102 mulgt1OLD 11972 ltmulgt11 11973 lemulge11 11976 nnmulcl 12141 addltmul 12349 xmulrid 13170 2submod 13831 cshw1 14721 bezoutlem1 16442 cshwshashnsame 17007 numclwlk1lem1 30339 numclwwlk6 30360 nmopub2tALT 31879 nmfnleub2 31896 sgnmulrp2 32809 1fldgenq 33278 unitdivcld 33904 zrhre 34022 knoppcnlem4 36509 1t1e1ALT 42267 remulcan2d 42269 sn-1ne2 42277 nnadddir 42282 nnmul1com 42283 sn-00idlem1 42410 sn-00idlem3 42412 remul02 42417 remul01 42419 rei4 42436 remulinvcom 42445 remullid 42446 sn-0tie0 42463 renegmulnnass 42477 mulgt0b1d 42484 sn-ltmulgt11d 42486 sn-0lt1 42487 mulgt0b2d 42490 3cubeslem1 42696 relexpmulnn 43721 relogbmulbexp 48572 line2xlem 48764 line2x 48765 |
| Copyright terms: Public domain | W3C validator |