Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-1rid | Structured version Visualization version GIF version |
Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 10823. Weakened from the original axiom in the form of statement in mulid1 10879, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
Ref | Expression |
---|---|
ax-1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cr 10776 | . . 3 class ℝ | |
3 | 1, 2 | wcel 2112 | . 2 wff 𝐴 ∈ ℝ |
4 | c1 10778 | . . . 4 class 1 | |
5 | cmul 10782 | . . . 4 class · | |
6 | 1, 4, 5 | co 7252 | . . 3 class (𝐴 · 1) |
7 | 6, 1 | wceq 1543 | . 2 wff (𝐴 · 1) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: mulid1 10879 mulgt1 11739 ltmulgt11 11740 lemulge11 11742 nnmulcl 11902 addltmul 12114 xmulid1 12917 2submod 13555 cshw1 14438 bezoutlem1 16150 cshwshashnsame 16708 numclwlk1lem1 28609 numclwwlk6 28630 nmopub2tALT 30147 nmfnleub2 30164 unitdivcld 31728 zrhre 31844 sgnmulrp2 32385 knoppcnlem4 34578 1t1e1ALT 40185 remulcan2d 40186 sn-1ne2 40188 nnadddir 40193 nnmul1com 40194 sn-00idlem1 40274 sn-00idlem3 40276 remul02 40281 remul01 40283 rei4 40298 remulinvcom 40307 remulid2 40308 sn-0tie0 40314 mulgt0b2d 40323 sn-0lt1 40325 3cubeslem1 40394 relexpmulnn 41179 relogbmulbexp 45768 line2xlem 45960 line2x 45961 |
Copyright terms: Public domain | W3C validator |