![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-1rid | Structured version Visualization version GIF version |
Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 11230. Weakened from the original axiom in the form of statement in mulrid 11288, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
Ref | Expression |
---|---|
ax-1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cr 11183 | . . 3 class ℝ | |
3 | 1, 2 | wcel 2108 | . 2 wff 𝐴 ∈ ℝ |
4 | c1 11185 | . . . 4 class 1 | |
5 | cmul 11189 | . . . 4 class · | |
6 | 1, 4, 5 | co 7448 | . . 3 class (𝐴 · 1) |
7 | 6, 1 | wceq 1537 | . 2 wff (𝐴 · 1) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: mulrid 11288 mulgt1OLD 12153 ltmulgt11 12154 lemulge11 12157 nnmulcl 12317 addltmul 12529 xmulrid 13341 2submod 13983 cshw1 14870 bezoutlem1 16586 cshwshashnsame 17151 numclwlk1lem1 30401 numclwwlk6 30422 nmopub2tALT 31941 nmfnleub2 31958 1fldgenq 33289 unitdivcld 33847 zrhre 33965 sgnmulrp2 34508 knoppcnlem4 36462 1t1e1ALT 42250 remulcan2d 42252 sn-1ne2 42254 nnadddir 42259 nnmul1com 42260 sn-00idlem1 42374 sn-00idlem3 42376 remul02 42381 remul01 42383 rei4 42399 remulinvcom 42408 remullid 42409 sn-0tie0 42415 renegmulnnass 42429 mulgt0b2d 42436 sn-ltmulgt11d 42438 sn-0lt1 42439 3cubeslem1 42640 relexpmulnn 43671 relogbmulbexp 48295 line2xlem 48487 line2x 48488 |
Copyright terms: Public domain | W3C validator |