| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-1rid | Structured version Visualization version GIF version | ||
| Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 11121. Weakened from the original axiom in the form of statement in mulrid 11179, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
| Ref | Expression |
|---|---|
| ax-1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cr 11074 | . . 3 class ℝ | |
| 3 | 1, 2 | wcel 2109 | . 2 wff 𝐴 ∈ ℝ |
| 4 | c1 11076 | . . . 4 class 1 | |
| 5 | cmul 11080 | . . . 4 class · | |
| 6 | 1, 4, 5 | co 7390 | . . 3 class (𝐴 · 1) |
| 7 | 6, 1 | wceq 1540 | . 2 wff (𝐴 · 1) = 𝐴 |
| 8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: mulrid 11179 mulgt1OLD 12048 ltmulgt11 12049 lemulge11 12052 nnmulcl 12217 addltmul 12425 xmulrid 13246 2submod 13904 cshw1 14794 bezoutlem1 16516 cshwshashnsame 17081 numclwlk1lem1 30305 numclwwlk6 30326 nmopub2tALT 31845 nmfnleub2 31862 sgnmulrp2 32768 1fldgenq 33279 unitdivcld 33898 zrhre 34016 knoppcnlem4 36491 1t1e1ALT 42250 remulcan2d 42252 sn-1ne2 42260 nnadddir 42265 nnmul1com 42266 sn-00idlem1 42393 sn-00idlem3 42395 remul02 42400 remul01 42402 rei4 42419 remulinvcom 42428 remullid 42429 sn-0tie0 42446 renegmulnnass 42460 mulgt0b1d 42467 sn-ltmulgt11d 42469 sn-0lt1 42470 mulgt0b2d 42473 3cubeslem1 42679 relexpmulnn 43705 relogbmulbexp 48554 line2xlem 48746 line2x 48747 |
| Copyright terms: Public domain | W3C validator |