| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-1rid | Structured version Visualization version GIF version | ||
| Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 11062. Weakened from the original axiom in the form of statement in mulrid 11120, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
| Ref | Expression |
|---|---|
| ax-1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cr 11015 | . . 3 class ℝ | |
| 3 | 1, 2 | wcel 2113 | . 2 wff 𝐴 ∈ ℝ |
| 4 | c1 11017 | . . . 4 class 1 | |
| 5 | cmul 11021 | . . . 4 class · | |
| 6 | 1, 4, 5 | co 7355 | . . 3 class (𝐴 · 1) |
| 7 | 6, 1 | wceq 1541 | . 2 wff (𝐴 · 1) = 𝐴 |
| 8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: mulrid 11120 mulgt1OLD 11990 ltmulgt11 11991 lemulge11 11994 nnmulcl 12159 addltmul 12367 xmulrid 13188 2submod 13849 cshw1 14739 bezoutlem1 16460 cshwshashnsame 17025 numclwlk1lem1 30360 numclwwlk6 30381 nmopub2tALT 31900 nmfnleub2 31917 sgnmulrp2 32830 1fldgenq 33299 unitdivcld 33925 zrhre 34043 knoppcnlem4 36551 1t1e1ALT 42363 remulcan2d 42365 sn-1ne2 42373 nnadddir 42378 nnmul1com 42379 sn-00idlem1 42506 sn-00idlem3 42508 remul02 42513 remul01 42515 rei4 42532 remulinvcom 42541 remullid 42542 sn-0tie0 42559 renegmulnnass 42573 mulgt0b1d 42580 sn-ltmulgt11d 42582 sn-0lt1 42583 mulgt0b2d 42586 3cubeslem1 42791 relexpmulnn 43816 relogbmulbexp 48676 line2xlem 48868 line2x 48869 |
| Copyright terms: Public domain | W3C validator |