![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-1rid | Structured version Visualization version GIF version |
Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 11156. Weakened from the original axiom in the form of statement in mulrid 11212, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
Ref | Expression |
---|---|
ax-1rid | โข (๐ด โ โ โ (๐ด ยท 1) = ๐ด) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class ๐ด | |
2 | cr 11109 | . . 3 class โ | |
3 | 1, 2 | wcel 2107 | . 2 wff ๐ด โ โ |
4 | c1 11111 | . . . 4 class 1 | |
5 | cmul 11115 | . . . 4 class ยท | |
6 | 1, 4, 5 | co 7409 | . . 3 class (๐ด ยท 1) |
7 | 6, 1 | wceq 1542 | . 2 wff (๐ด ยท 1) = ๐ด |
8 | 3, 7 | wi 4 | 1 wff (๐ด โ โ โ (๐ด ยท 1) = ๐ด) |
Colors of variables: wff setvar class |
This axiom is referenced by: mulrid 11212 mulgt1 12073 ltmulgt11 12074 lemulge11 12076 nnmulcl 12236 addltmul 12448 xmulrid 13258 2submod 13897 cshw1 14772 bezoutlem1 16481 cshwshashnsame 17037 numclwlk1lem1 29653 numclwwlk6 29674 nmopub2tALT 31193 nmfnleub2 31210 1fldgenq 32443 unitdivcld 32912 zrhre 33030 sgnmulrp2 33573 knoppcnlem4 35420 1t1e1ALT 41224 remulcan2d 41225 sn-1ne2 41227 nnadddir 41232 nnmul1com 41233 sn-00idlem1 41319 sn-00idlem3 41321 remul02 41326 remul01 41328 rei4 41344 remulinvcom 41353 remullid 41354 sn-0tie0 41360 renegmulnnass 41374 mulgt0b2d 41381 sn-0lt1 41383 3cubeslem1 41470 relexpmulnn 42508 relogbmulbexp 47295 line2xlem 47487 line2x 47488 |
Copyright terms: Public domain | W3C validator |