| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-1rid | Structured version Visualization version GIF version | ||
| Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 11114. Weakened from the original axiom in the form of statement in mulrid 11172, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
| Ref | Expression |
|---|---|
| ax-1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cr 11067 | . . 3 class ℝ | |
| 3 | 1, 2 | wcel 2109 | . 2 wff 𝐴 ∈ ℝ |
| 4 | c1 11069 | . . . 4 class 1 | |
| 5 | cmul 11073 | . . . 4 class · | |
| 6 | 1, 4, 5 | co 7387 | . . 3 class (𝐴 · 1) |
| 7 | 6, 1 | wceq 1540 | . 2 wff (𝐴 · 1) = 𝐴 |
| 8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: mulrid 11172 mulgt1OLD 12041 ltmulgt11 12042 lemulge11 12045 nnmulcl 12210 addltmul 12418 xmulrid 13239 2submod 13897 cshw1 14787 bezoutlem1 16509 cshwshashnsame 17074 numclwlk1lem1 30298 numclwwlk6 30319 nmopub2tALT 31838 nmfnleub2 31855 sgnmulrp2 32761 1fldgenq 33272 unitdivcld 33891 zrhre 34009 knoppcnlem4 36484 1t1e1ALT 42243 remulcan2d 42245 sn-1ne2 42253 nnadddir 42258 nnmul1com 42259 sn-00idlem1 42386 sn-00idlem3 42388 remul02 42393 remul01 42395 rei4 42412 remulinvcom 42421 remullid 42422 sn-0tie0 42439 renegmulnnass 42453 mulgt0b1d 42460 sn-ltmulgt11d 42462 sn-0lt1 42463 mulgt0b2d 42466 3cubeslem1 42672 relexpmulnn 43698 relogbmulbexp 48550 line2xlem 48742 line2x 48743 |
| Copyright terms: Public domain | W3C validator |