| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulridi | Structured version Visualization version GIF version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulridi | ⊢ (𝐴 · 1) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mulrid 11117 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 1c1 11014 · cmul 11018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-mulcl 11075 ax-mulcom 11077 ax-mulass 11079 ax-distr 11080 ax-1rid 11083 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: addrid 11300 0lt1 11646 muleqadd 11768 1t1e1 12289 2t1e2 12290 3t1e3 12292 9p1e10 12596 numltc 12620 numsucc 12634 dec10p 12637 numadd 12641 numaddc 12642 11multnc 12662 4t3lem 12691 5t2e10 12694 9t11e99 12724 nn0opthlem1 14177 faclbnd4lem1 14202 rei 15065 imi 15066 cji 15068 sqrtm1 15184 0.999... 15790 efival 16063 ef01bndlem 16095 5ndvds6 16327 3lcm2e6 16645 decsplit0b 16993 2exp8 17002 37prm 17034 43prm 17035 83prm 17036 139prm 17037 163prm 17038 317prm 17039 1259lem1 17044 1259lem2 17045 1259lem3 17046 1259lem4 17047 1259lem5 17048 2503lem1 17050 2503lem2 17051 2503prm 17053 4001lem1 17054 4001lem2 17055 4001lem3 17056 cnmsgnsubg 21516 mdetralt 22524 dveflem 25911 dvsincos 25913 efhalfpi 26408 pige3ALT 26457 cosne0 26466 efif1olem4 26482 logf1o2 26587 asin1 26832 dvatan 26873 log2ublem3 26886 log2ub 26887 birthday 26892 basellem9 27027 ppiub 27143 chtub 27151 bposlem8 27230 lgsdir2 27269 mulog2sumlem2 27474 pntlemb 27536 avril1 30445 ipidsq 30692 nmopadjlem 32071 nmopcoadji 32083 unierri 32086 sgnmul 32823 signswch 34595 itgexpif 34640 reprlt 34653 breprexp 34667 hgt750lem 34685 hgt750lem2 34686 circum 35739 dvasin 37764 3lexlogpow5ineq1 42167 3lexlogpow5ineq5 42173 aks4d1p1 42189 235t711 42423 ex-decpmul 42424 it1ei 42434 sqrtcval2 43759 resqrtvalex 43762 imsqrtvalex 43763 inductionexd 44272 xralrple3 45496 wallispi 46192 wallispi2lem2 46194 stirlinglem1 46196 dirkertrigeqlem3 46222 modm1p1ne 47494 257prm 47685 fmtno4prmfac193 47697 fmtno5fac 47706 139prmALT 47720 127prm 47723 2exp340mod341 47857 |
| Copyright terms: Public domain | W3C validator |