| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulridi | Structured version Visualization version GIF version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulridi | ⊢ (𝐴 · 1) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mulrid 11179 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-mulcom 11139 ax-mulass 11141 ax-distr 11142 ax-1rid 11145 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: addrid 11361 0lt1 11707 muleqadd 11829 1t1e1 12350 2t1e2 12351 3t1e3 12353 9p1e10 12658 numltc 12682 numsucc 12696 dec10p 12699 numadd 12703 numaddc 12704 11multnc 12724 4t3lem 12753 5t2e10 12756 9t11e99 12786 nn0opthlem1 14240 faclbnd4lem1 14265 rei 15129 imi 15130 cji 15132 sqrtm1 15248 0.999... 15854 efival 16127 ef01bndlem 16159 5ndvds6 16391 3lcm2e6 16709 decsplit0b 17057 2exp8 17066 37prm 17098 43prm 17099 83prm 17100 139prm 17101 163prm 17102 317prm 17103 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 2503lem1 17114 2503lem2 17115 2503prm 17117 4001lem1 17118 4001lem2 17119 4001lem3 17120 cnmsgnsubg 21493 mdetralt 22502 dveflem 25890 dvsincos 25892 efhalfpi 26387 pige3ALT 26436 cosne0 26445 efif1olem4 26461 logf1o2 26566 asin1 26811 dvatan 26852 log2ublem3 26865 log2ub 26866 birthday 26871 basellem9 27006 ppiub 27122 chtub 27130 bposlem8 27209 lgsdir2 27248 mulog2sumlem2 27453 pntlemb 27515 avril1 30399 ipidsq 30646 nmopadjlem 32025 nmopcoadji 32037 unierri 32040 sgnmul 32767 signswch 34559 itgexpif 34604 reprlt 34617 breprexp 34631 hgt750lem 34649 hgt750lem2 34650 circum 35668 dvasin 37705 3lexlogpow5ineq1 42049 3lexlogpow5ineq5 42055 aks4d1p1 42071 235t711 42300 ex-decpmul 42301 it1ei 42311 sqrtcval2 43638 resqrtvalex 43641 imsqrtvalex 43642 inductionexd 44151 xralrple3 45377 wallispi 46075 wallispi2lem2 46077 stirlinglem1 46079 dirkertrigeqlem3 46105 modm1p1ne 47375 257prm 47566 fmtno4prmfac193 47578 fmtno5fac 47587 139prmALT 47601 127prm 47604 2exp340mod341 47738 |
| Copyright terms: Public domain | W3C validator |