| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulridi | Structured version Visualization version GIF version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulridi | ⊢ (𝐴 · 1) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mulrid 11107 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 1c1 11004 · cmul 11008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-mulcl 11065 ax-mulcom 11067 ax-mulass 11069 ax-distr 11070 ax-1rid 11073 ax-cnre 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: addrid 11290 0lt1 11636 muleqadd 11758 1t1e1 12279 2t1e2 12280 3t1e3 12282 9p1e10 12587 numltc 12611 numsucc 12625 dec10p 12628 numadd 12632 numaddc 12633 11multnc 12653 4t3lem 12682 5t2e10 12685 9t11e99 12715 nn0opthlem1 14172 faclbnd4lem1 14197 rei 15060 imi 15061 cji 15063 sqrtm1 15179 0.999... 15785 efival 16058 ef01bndlem 16090 5ndvds6 16322 3lcm2e6 16640 decsplit0b 16988 2exp8 16997 37prm 17029 43prm 17030 83prm 17031 139prm 17032 163prm 17033 317prm 17034 1259lem1 17039 1259lem2 17040 1259lem3 17041 1259lem4 17042 1259lem5 17043 2503lem1 17045 2503lem2 17046 2503prm 17048 4001lem1 17049 4001lem2 17050 4001lem3 17051 cnmsgnsubg 21512 mdetralt 22521 dveflem 25908 dvsincos 25910 efhalfpi 26405 pige3ALT 26454 cosne0 26463 efif1olem4 26479 logf1o2 26584 asin1 26829 dvatan 26870 log2ublem3 26883 log2ub 26884 birthday 26889 basellem9 27024 ppiub 27140 chtub 27148 bposlem8 27227 lgsdir2 27266 mulog2sumlem2 27471 pntlemb 27533 avril1 30438 ipidsq 30685 nmopadjlem 32064 nmopcoadji 32076 unierri 32079 sgnmul 32813 signswch 34569 itgexpif 34614 reprlt 34627 breprexp 34641 hgt750lem 34659 hgt750lem2 34660 circum 35706 dvasin 37743 3lexlogpow5ineq1 42086 3lexlogpow5ineq5 42092 aks4d1p1 42108 235t711 42337 ex-decpmul 42338 it1ei 42348 sqrtcval2 43674 resqrtvalex 43677 imsqrtvalex 43678 inductionexd 44187 xralrple3 45411 wallispi 46107 wallispi2lem2 46109 stirlinglem1 46111 dirkertrigeqlem3 46137 modm1p1ne 47400 257prm 47591 fmtno4prmfac193 47603 fmtno5fac 47612 139prmALT 47626 127prm 47629 2exp340mod341 47763 |
| Copyright terms: Public domain | W3C validator |