| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulridi | Structured version Visualization version GIF version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulridi | ⊢ (𝐴 · 1) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mulrid 11231 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 1c1 11128 · cmul 11132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-mulcl 11189 ax-mulcom 11191 ax-mulass 11193 ax-distr 11194 ax-1rid 11197 ax-cnre 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 |
| This theorem is referenced by: addrid 11413 0lt1 11757 muleqadd 11879 1t1e1 12400 2t1e2 12401 3t1e3 12403 9p1e10 12708 numltc 12732 numsucc 12746 dec10p 12749 numadd 12753 numaddc 12754 11multnc 12774 4t3lem 12803 5t2e10 12806 9t11e99 12836 nn0opthlem1 14284 faclbnd4lem1 14309 rei 15173 imi 15174 cji 15176 sqrtm1 15292 0.999... 15895 efival 16168 ef01bndlem 16200 5ndvds6 16431 3lcm2e6 16749 decsplit0b 17097 2exp8 17106 37prm 17138 43prm 17139 83prm 17140 139prm 17141 163prm 17142 317prm 17143 1259lem1 17148 1259lem2 17149 1259lem3 17150 1259lem4 17151 1259lem5 17152 2503lem1 17154 2503lem2 17155 2503prm 17157 4001lem1 17158 4001lem2 17159 4001lem3 17160 cnmsgnsubg 21535 mdetralt 22544 dveflem 25933 dvsincos 25935 efhalfpi 26430 pige3ALT 26479 cosne0 26488 efif1olem4 26504 logf1o2 26609 asin1 26854 dvatan 26895 log2ublem3 26908 log2ub 26909 birthday 26914 basellem9 27049 ppiub 27165 chtub 27173 bposlem8 27252 lgsdir2 27291 mulog2sumlem2 27496 pntlemb 27558 avril1 30390 ipidsq 30637 nmopadjlem 32016 nmopcoadji 32028 unierri 32031 sgnmul 32760 signswch 34539 itgexpif 34584 reprlt 34597 breprexp 34611 hgt750lem 34629 hgt750lem2 34630 circum 35642 dvasin 37674 3lexlogpow5ineq1 42013 3lexlogpow5ineq5 42019 aks4d1p1 42035 235t711 42301 ex-decpmul 42302 it1ei 42312 sqrtcval2 43613 resqrtvalex 43616 imsqrtvalex 43617 inductionexd 44126 xralrple3 45349 wallispi 46047 wallispi2lem2 46049 stirlinglem1 46051 dirkertrigeqlem3 46077 257prm 47523 fmtno4prmfac193 47535 fmtno5fac 47544 139prmALT 47558 127prm 47561 2exp340mod341 47695 |
| Copyright terms: Public domain | W3C validator |