| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulridi | Structured version Visualization version GIF version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulridi | ⊢ (𝐴 · 1) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mulrid 11132 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 1c1 11029 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-mulcom 11092 ax-mulass 11094 ax-distr 11095 ax-1rid 11098 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: addrid 11314 0lt1 11660 muleqadd 11782 1t1e1 12303 2t1e2 12304 3t1e3 12306 9p1e10 12611 numltc 12635 numsucc 12649 dec10p 12652 numadd 12656 numaddc 12657 11multnc 12677 4t3lem 12706 5t2e10 12709 9t11e99 12739 nn0opthlem1 14193 faclbnd4lem1 14218 rei 15081 imi 15082 cji 15084 sqrtm1 15200 0.999... 15806 efival 16079 ef01bndlem 16111 5ndvds6 16343 3lcm2e6 16661 decsplit0b 17009 2exp8 17018 37prm 17050 43prm 17051 83prm 17052 139prm 17053 163prm 17054 317prm 17055 1259lem1 17060 1259lem2 17061 1259lem3 17062 1259lem4 17063 1259lem5 17064 2503lem1 17066 2503lem2 17067 2503prm 17069 4001lem1 17070 4001lem2 17071 4001lem3 17072 cnmsgnsubg 21502 mdetralt 22511 dveflem 25899 dvsincos 25901 efhalfpi 26396 pige3ALT 26445 cosne0 26454 efif1olem4 26470 logf1o2 26575 asin1 26820 dvatan 26861 log2ublem3 26874 log2ub 26875 birthday 26880 basellem9 27015 ppiub 27131 chtub 27139 bposlem8 27218 lgsdir2 27257 mulog2sumlem2 27462 pntlemb 27524 avril1 30425 ipidsq 30672 nmopadjlem 32051 nmopcoadji 32063 unierri 32066 sgnmul 32793 signswch 34528 itgexpif 34573 reprlt 34586 breprexp 34600 hgt750lem 34618 hgt750lem2 34619 circum 35646 dvasin 37683 3lexlogpow5ineq1 42027 3lexlogpow5ineq5 42033 aks4d1p1 42049 235t711 42278 ex-decpmul 42279 it1ei 42289 sqrtcval2 43615 resqrtvalex 43618 imsqrtvalex 43619 inductionexd 44128 xralrple3 45354 wallispi 46052 wallispi2lem2 46054 stirlinglem1 46056 dirkertrigeqlem3 46082 modm1p1ne 47355 257prm 47546 fmtno4prmfac193 47558 fmtno5fac 47567 139prmALT 47581 127prm 47584 2exp340mod341 47718 |
| Copyright terms: Public domain | W3C validator |