![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulridi | Structured version Visualization version GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulridi | ⊢ (𝐴 · 1) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulrid 11288 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 1c1 11185 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-mulcom 11248 ax-mulass 11250 ax-distr 11251 ax-1rid 11254 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: addrid 11470 0lt1 11812 muleqadd 11934 1t1e1 12455 2t1e2 12456 3t1e3 12458 halfpm6th 12514 9p1e10 12760 numltc 12784 numsucc 12798 dec10p 12801 numadd 12805 numaddc 12806 11multnc 12826 4t3lem 12855 5t2e10 12858 9t11e99 12888 nn0opthlem1 14317 faclbnd4lem1 14342 rei 15205 imi 15206 cji 15208 sqrtm1 15324 0.999... 15929 efival 16200 ef01bndlem 16232 3lcm2e6 16779 decsplit0b 17127 2exp8 17136 37prm 17168 43prm 17169 83prm 17170 139prm 17171 163prm 17172 317prm 17173 1259lem1 17178 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 2503lem1 17184 2503lem2 17185 2503prm 17187 4001lem1 17188 4001lem2 17189 4001lem3 17190 cnmsgnsubg 21618 mdetralt 22635 dveflem 26037 dvsincos 26039 efhalfpi 26531 pige3ALT 26580 cosne0 26589 efif1olem4 26605 logf1o2 26710 asin1 26955 dvatan 26996 log2ublem3 27009 log2ub 27010 birthday 27015 basellem9 27150 ppiub 27266 chtub 27274 bposlem8 27353 lgsdir2 27392 mulog2sumlem2 27597 pntlemb 27659 avril1 30495 ipidsq 30742 nmopadjlem 32121 nmopcoadji 32133 unierri 32136 sgnmul 34507 signswch 34538 itgexpif 34583 reprlt 34596 breprexp 34610 hgt750lem 34628 hgt750lem2 34629 circum 35642 dvasin 37664 3lexlogpow5ineq1 42011 3lexlogpow5ineq5 42017 aks4d1p1 42033 235t711 42293 ex-decpmul 42294 it1ei 42305 sqrtcval2 43604 resqrtvalex 43607 imsqrtvalex 43608 inductionexd 44117 xralrple3 45289 wallispi 45991 wallispi2lem2 45993 stirlinglem1 45995 dirkertrigeqlem3 46021 257prm 47435 fmtno4prmfac193 47447 fmtno5fac 47456 139prmALT 47470 127prm 47473 2exp340mod341 47607 |
Copyright terms: Public domain | W3C validator |