| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulridi | Structured version Visualization version GIF version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulridi | ⊢ (𝐴 · 1) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mulrid 11172 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-mulcom 11132 ax-mulass 11134 ax-distr 11135 ax-1rid 11138 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: addrid 11354 0lt1 11700 muleqadd 11822 1t1e1 12343 2t1e2 12344 3t1e3 12346 9p1e10 12651 numltc 12675 numsucc 12689 dec10p 12692 numadd 12696 numaddc 12697 11multnc 12717 4t3lem 12746 5t2e10 12749 9t11e99 12779 nn0opthlem1 14233 faclbnd4lem1 14258 rei 15122 imi 15123 cji 15125 sqrtm1 15241 0.999... 15847 efival 16120 ef01bndlem 16152 5ndvds6 16384 3lcm2e6 16702 decsplit0b 17050 2exp8 17059 37prm 17091 43prm 17092 83prm 17093 139prm 17094 163prm 17095 317prm 17096 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 2503lem1 17107 2503lem2 17108 2503prm 17110 4001lem1 17111 4001lem2 17112 4001lem3 17113 cnmsgnsubg 21486 mdetralt 22495 dveflem 25883 dvsincos 25885 efhalfpi 26380 pige3ALT 26429 cosne0 26438 efif1olem4 26454 logf1o2 26559 asin1 26804 dvatan 26845 log2ublem3 26858 log2ub 26859 birthday 26864 basellem9 26999 ppiub 27115 chtub 27123 bposlem8 27202 lgsdir2 27241 mulog2sumlem2 27446 pntlemb 27508 avril1 30392 ipidsq 30639 nmopadjlem 32018 nmopcoadji 32030 unierri 32033 sgnmul 32760 signswch 34552 itgexpif 34597 reprlt 34610 breprexp 34624 hgt750lem 34642 hgt750lem2 34643 circum 35661 dvasin 37698 3lexlogpow5ineq1 42042 3lexlogpow5ineq5 42048 aks4d1p1 42064 235t711 42293 ex-decpmul 42294 it1ei 42304 sqrtcval2 43631 resqrtvalex 43634 imsqrtvalex 43635 inductionexd 44144 xralrple3 45370 wallispi 46068 wallispi2lem2 46070 stirlinglem1 46072 dirkertrigeqlem3 46098 modm1p1ne 47371 257prm 47562 fmtno4prmfac193 47574 fmtno5fac 47583 139prmALT 47597 127prm 47600 2exp340mod341 47734 |
| Copyright terms: Public domain | W3C validator |