MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe1m Structured version   Visualization version   GIF version

Theorem oe1m 8557
Description: Ordinal exponentiation with a base of 1. Proposition 8.31(3) of [TakeutiZaring] p. 67. Lemma 2.17 of [Schloeder] p. 6. (Contributed by NM, 2-Jan-2005.)
Assertion
Ref Expression
oe1m (𝐴 ∈ On → (1oo 𝐴) = 1o)

Proof of Theorem oe1m
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . 3 (𝑥 = ∅ → (1oo 𝑥) = (1oo ∅))
21eqeq1d 2737 . 2 (𝑥 = ∅ → ((1oo 𝑥) = 1o ↔ (1oo ∅) = 1o))
3 oveq2 7413 . . 3 (𝑥 = 𝑦 → (1oo 𝑥) = (1oo 𝑦))
43eqeq1d 2737 . 2 (𝑥 = 𝑦 → ((1oo 𝑥) = 1o ↔ (1oo 𝑦) = 1o))
5 oveq2 7413 . . 3 (𝑥 = suc 𝑦 → (1oo 𝑥) = (1oo suc 𝑦))
65eqeq1d 2737 . 2 (𝑥 = suc 𝑦 → ((1oo 𝑥) = 1o ↔ (1oo suc 𝑦) = 1o))
7 oveq2 7413 . . 3 (𝑥 = 𝐴 → (1oo 𝑥) = (1oo 𝐴))
87eqeq1d 2737 . 2 (𝑥 = 𝐴 → ((1oo 𝑥) = 1o ↔ (1oo 𝐴) = 1o))
9 1on 8492 . . 3 1o ∈ On
10 oe0 8534 . . 3 (1o ∈ On → (1oo ∅) = 1o)
119, 10ax-mp 5 . 2 (1oo ∅) = 1o
12 oesuc 8539 . . . . 5 ((1o ∈ On ∧ 𝑦 ∈ On) → (1oo suc 𝑦) = ((1oo 𝑦) ·o 1o))
139, 12mpan 690 . . . 4 (𝑦 ∈ On → (1oo suc 𝑦) = ((1oo 𝑦) ·o 1o))
14 oveq1 7412 . . . . 5 ((1oo 𝑦) = 1o → ((1oo 𝑦) ·o 1o) = (1o ·o 1o))
15 om1 8554 . . . . . 6 (1o ∈ On → (1o ·o 1o) = 1o)
169, 15ax-mp 5 . . . . 5 (1o ·o 1o) = 1o
1714, 16eqtrdi 2786 . . . 4 ((1oo 𝑦) = 1o → ((1oo 𝑦) ·o 1o) = 1o)
1813, 17sylan9eq 2790 . . 3 ((𝑦 ∈ On ∧ (1oo 𝑦) = 1o) → (1oo suc 𝑦) = 1o)
1918ex 412 . 2 (𝑦 ∈ On → ((1oo 𝑦) = 1o → (1oo suc 𝑦) = 1o))
20 iuneq2 4987 . . 3 (∀𝑦𝑥 (1oo 𝑦) = 1o 𝑦𝑥 (1oo 𝑦) = 𝑦𝑥 1o)
21 vex 3463 . . . . . 6 𝑥 ∈ V
22 0lt1o 8516 . . . . . . . 8 ∅ ∈ 1o
23 oelim 8546 . . . . . . . 8 (((1o ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 1o) → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
2422, 23mpan2 691 . . . . . . 7 ((1o ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
259, 24mpan 690 . . . . . 6 ((𝑥 ∈ V ∧ Lim 𝑥) → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
2621, 25mpan 690 . . . . 5 (Lim 𝑥 → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
2726eqeq1d 2737 . . . 4 (Lim 𝑥 → ((1oo 𝑥) = 1o 𝑦𝑥 (1oo 𝑦) = 1o))
28 0ellim 6416 . . . . . 6 (Lim 𝑥 → ∅ ∈ 𝑥)
29 ne0i 4316 . . . . . 6 (∅ ∈ 𝑥𝑥 ≠ ∅)
30 iunconst 4977 . . . . . 6 (𝑥 ≠ ∅ → 𝑦𝑥 1o = 1o)
3128, 29, 303syl 18 . . . . 5 (Lim 𝑥 𝑦𝑥 1o = 1o)
3231eqeq2d 2746 . . . 4 (Lim 𝑥 → ( 𝑦𝑥 (1oo 𝑦) = 𝑦𝑥 1o 𝑦𝑥 (1oo 𝑦) = 1o))
3327, 32bitr4d 282 . . 3 (Lim 𝑥 → ((1oo 𝑥) = 1o 𝑦𝑥 (1oo 𝑦) = 𝑦𝑥 1o))
3420, 33imbitrrid 246 . 2 (Lim 𝑥 → (∀𝑦𝑥 (1oo 𝑦) = 1o → (1oo 𝑥) = 1o))
352, 4, 6, 8, 11, 19, 34tfinds 7855 1 (𝐴 ∈ On → (1oo 𝐴) = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  c0 4308   ciun 4967  Oncon0 6352  Lim wlim 6353  suc csuc 6354  (class class class)co 7405  1oc1o 8473   ·o comu 8478  o coe 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-oexp 8486
This theorem is referenced by:  oewordi  8603  oeoe  8611  cantnflem2  9704
  Copyright terms: Public domain W3C validator