MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe1m Structured version   Visualization version   GIF version

Theorem oe1m 8509
Description: Ordinal exponentiation with a base of 1. Proposition 8.31(3) of [TakeutiZaring] p. 67. Lemma 2.17 of [Schloeder] p. 6. (Contributed by NM, 2-Jan-2005.)
Assertion
Ref Expression
oe1m (𝐴 ∈ On → (1oo 𝐴) = 1o)

Proof of Theorem oe1m
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . 3 (𝑥 = ∅ → (1oo 𝑥) = (1oo ∅))
21eqeq1d 2731 . 2 (𝑥 = ∅ → ((1oo 𝑥) = 1o ↔ (1oo ∅) = 1o))
3 oveq2 7395 . . 3 (𝑥 = 𝑦 → (1oo 𝑥) = (1oo 𝑦))
43eqeq1d 2731 . 2 (𝑥 = 𝑦 → ((1oo 𝑥) = 1o ↔ (1oo 𝑦) = 1o))
5 oveq2 7395 . . 3 (𝑥 = suc 𝑦 → (1oo 𝑥) = (1oo suc 𝑦))
65eqeq1d 2731 . 2 (𝑥 = suc 𝑦 → ((1oo 𝑥) = 1o ↔ (1oo suc 𝑦) = 1o))
7 oveq2 7395 . . 3 (𝑥 = 𝐴 → (1oo 𝑥) = (1oo 𝐴))
87eqeq1d 2731 . 2 (𝑥 = 𝐴 → ((1oo 𝑥) = 1o ↔ (1oo 𝐴) = 1o))
9 1on 8446 . . 3 1o ∈ On
10 oe0 8486 . . 3 (1o ∈ On → (1oo ∅) = 1o)
119, 10ax-mp 5 . 2 (1oo ∅) = 1o
12 oesuc 8491 . . . . 5 ((1o ∈ On ∧ 𝑦 ∈ On) → (1oo suc 𝑦) = ((1oo 𝑦) ·o 1o))
139, 12mpan 690 . . . 4 (𝑦 ∈ On → (1oo suc 𝑦) = ((1oo 𝑦) ·o 1o))
14 oveq1 7394 . . . . 5 ((1oo 𝑦) = 1o → ((1oo 𝑦) ·o 1o) = (1o ·o 1o))
15 om1 8506 . . . . . 6 (1o ∈ On → (1o ·o 1o) = 1o)
169, 15ax-mp 5 . . . . 5 (1o ·o 1o) = 1o
1714, 16eqtrdi 2780 . . . 4 ((1oo 𝑦) = 1o → ((1oo 𝑦) ·o 1o) = 1o)
1813, 17sylan9eq 2784 . . 3 ((𝑦 ∈ On ∧ (1oo 𝑦) = 1o) → (1oo suc 𝑦) = 1o)
1918ex 412 . 2 (𝑦 ∈ On → ((1oo 𝑦) = 1o → (1oo suc 𝑦) = 1o))
20 iuneq2 4975 . . 3 (∀𝑦𝑥 (1oo 𝑦) = 1o 𝑦𝑥 (1oo 𝑦) = 𝑦𝑥 1o)
21 vex 3451 . . . . . 6 𝑥 ∈ V
22 0lt1o 8468 . . . . . . . 8 ∅ ∈ 1o
23 oelim 8498 . . . . . . . 8 (((1o ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 1o) → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
2422, 23mpan2 691 . . . . . . 7 ((1o ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
259, 24mpan 690 . . . . . 6 ((𝑥 ∈ V ∧ Lim 𝑥) → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
2621, 25mpan 690 . . . . 5 (Lim 𝑥 → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
2726eqeq1d 2731 . . . 4 (Lim 𝑥 → ((1oo 𝑥) = 1o 𝑦𝑥 (1oo 𝑦) = 1o))
28 0ellim 6396 . . . . . 6 (Lim 𝑥 → ∅ ∈ 𝑥)
29 ne0i 4304 . . . . . 6 (∅ ∈ 𝑥𝑥 ≠ ∅)
30 iunconst 4965 . . . . . 6 (𝑥 ≠ ∅ → 𝑦𝑥 1o = 1o)
3128, 29, 303syl 18 . . . . 5 (Lim 𝑥 𝑦𝑥 1o = 1o)
3231eqeq2d 2740 . . . 4 (Lim 𝑥 → ( 𝑦𝑥 (1oo 𝑦) = 𝑦𝑥 1o 𝑦𝑥 (1oo 𝑦) = 1o))
3327, 32bitr4d 282 . . 3 (Lim 𝑥 → ((1oo 𝑥) = 1o 𝑦𝑥 (1oo 𝑦) = 𝑦𝑥 1o))
3420, 33imbitrrid 246 . 2 (Lim 𝑥 → (∀𝑦𝑥 (1oo 𝑦) = 1o → (1oo 𝑥) = 1o))
352, 4, 6, 8, 11, 19, 34tfinds 7836 1 (𝐴 ∈ On → (1oo 𝐴) = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  c0 4296   ciun 4955  Oncon0 6332  Lim wlim 6333  suc csuc 6334  (class class class)co 7387  1oc1o 8427   ·o comu 8432  o coe 8433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-oexp 8440
This theorem is referenced by:  oewordi  8555  oeoe  8563  cantnflem2  9643
  Copyright terms: Public domain W3C validator