MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe1m Structured version   Visualization version   GIF version

Theorem oe1m 7911
Description: Ordinal exponentiation with a mantissa of 1. Proposition 8.31(3) of [TakeutiZaring] p. 67. (Contributed by NM, 2-Jan-2005.)
Assertion
Ref Expression
oe1m (𝐴 ∈ On → (1oo 𝐴) = 1o)

Proof of Theorem oe1m
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6932 . . 3 (𝑥 = ∅ → (1oo 𝑥) = (1oo ∅))
21eqeq1d 2780 . 2 (𝑥 = ∅ → ((1oo 𝑥) = 1o ↔ (1oo ∅) = 1o))
3 oveq2 6932 . . 3 (𝑥 = 𝑦 → (1oo 𝑥) = (1oo 𝑦))
43eqeq1d 2780 . 2 (𝑥 = 𝑦 → ((1oo 𝑥) = 1o ↔ (1oo 𝑦) = 1o))
5 oveq2 6932 . . 3 (𝑥 = suc 𝑦 → (1oo 𝑥) = (1oo suc 𝑦))
65eqeq1d 2780 . 2 (𝑥 = suc 𝑦 → ((1oo 𝑥) = 1o ↔ (1oo suc 𝑦) = 1o))
7 oveq2 6932 . . 3 (𝑥 = 𝐴 → (1oo 𝑥) = (1oo 𝐴))
87eqeq1d 2780 . 2 (𝑥 = 𝐴 → ((1oo 𝑥) = 1o ↔ (1oo 𝐴) = 1o))
9 1on 7852 . . 3 1o ∈ On
10 oe0 7888 . . 3 (1o ∈ On → (1oo ∅) = 1o)
119, 10ax-mp 5 . 2 (1oo ∅) = 1o
12 oesuc 7893 . . . . 5 ((1o ∈ On ∧ 𝑦 ∈ On) → (1oo suc 𝑦) = ((1oo 𝑦) ·o 1o))
139, 12mpan 680 . . . 4 (𝑦 ∈ On → (1oo suc 𝑦) = ((1oo 𝑦) ·o 1o))
14 oveq1 6931 . . . . 5 ((1oo 𝑦) = 1o → ((1oo 𝑦) ·o 1o) = (1o ·o 1o))
15 om1 7908 . . . . . 6 (1o ∈ On → (1o ·o 1o) = 1o)
169, 15ax-mp 5 . . . . 5 (1o ·o 1o) = 1o
1714, 16syl6eq 2830 . . . 4 ((1oo 𝑦) = 1o → ((1oo 𝑦) ·o 1o) = 1o)
1813, 17sylan9eq 2834 . . 3 ((𝑦 ∈ On ∧ (1oo 𝑦) = 1o) → (1oo suc 𝑦) = 1o)
1918ex 403 . 2 (𝑦 ∈ On → ((1oo 𝑦) = 1o → (1oo suc 𝑦) = 1o))
20 iuneq2 4772 . . 3 (∀𝑦𝑥 (1oo 𝑦) = 1o 𝑦𝑥 (1oo 𝑦) = 𝑦𝑥 1o)
21 vex 3401 . . . . . 6 𝑥 ∈ V
22 0lt1o 7870 . . . . . . . 8 ∅ ∈ 1o
23 oelim 7900 . . . . . . . 8 (((1o ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 1o) → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
2422, 23mpan2 681 . . . . . . 7 ((1o ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
259, 24mpan 680 . . . . . 6 ((𝑥 ∈ V ∧ Lim 𝑥) → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
2621, 25mpan 680 . . . . 5 (Lim 𝑥 → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
2726eqeq1d 2780 . . . 4 (Lim 𝑥 → ((1oo 𝑥) = 1o 𝑦𝑥 (1oo 𝑦) = 1o))
28 0ellim 6040 . . . . . 6 (Lim 𝑥 → ∅ ∈ 𝑥)
29 ne0i 4149 . . . . . 6 (∅ ∈ 𝑥𝑥 ≠ ∅)
30 iunconst 4764 . . . . . 6 (𝑥 ≠ ∅ → 𝑦𝑥 1o = 1o)
3128, 29, 303syl 18 . . . . 5 (Lim 𝑥 𝑦𝑥 1o = 1o)
3231eqeq2d 2788 . . . 4 (Lim 𝑥 → ( 𝑦𝑥 (1oo 𝑦) = 𝑦𝑥 1o 𝑦𝑥 (1oo 𝑦) = 1o))
3327, 32bitr4d 274 . . 3 (Lim 𝑥 → ((1oo 𝑥) = 1o 𝑦𝑥 (1oo 𝑦) = 𝑦𝑥 1o))
3420, 33syl5ibr 238 . 2 (Lim 𝑥 → (∀𝑦𝑥 (1oo 𝑦) = 1o → (1oo 𝑥) = 1o))
352, 4, 6, 8, 11, 19, 34tfinds 7339 1 (𝐴 ∈ On → (1oo 𝐴) = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  wral 3090  Vcvv 3398  c0 4141   ciun 4755  Oncon0 5978  Lim wlim 5979  suc csuc 5980  (class class class)co 6924  1oc1o 7838   ·o comu 7843  o coe 7844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-omul 7850  df-oexp 7851
This theorem is referenced by:  oewordi  7957  oeoe  7965  cantnflem2  8886
  Copyright terms: Public domain W3C validator