MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe1m Structured version   Visualization version   GIF version

Theorem oe1m 8338
Description: Ordinal exponentiation with a base of 1. Proposition 8.31(3) of [TakeutiZaring] p. 67. (Contributed by NM, 2-Jan-2005.)
Assertion
Ref Expression
oe1m (𝐴 ∈ On → (1oo 𝐴) = 1o)

Proof of Theorem oe1m
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . 3 (𝑥 = ∅ → (1oo 𝑥) = (1oo ∅))
21eqeq1d 2740 . 2 (𝑥 = ∅ → ((1oo 𝑥) = 1o ↔ (1oo ∅) = 1o))
3 oveq2 7263 . . 3 (𝑥 = 𝑦 → (1oo 𝑥) = (1oo 𝑦))
43eqeq1d 2740 . 2 (𝑥 = 𝑦 → ((1oo 𝑥) = 1o ↔ (1oo 𝑦) = 1o))
5 oveq2 7263 . . 3 (𝑥 = suc 𝑦 → (1oo 𝑥) = (1oo suc 𝑦))
65eqeq1d 2740 . 2 (𝑥 = suc 𝑦 → ((1oo 𝑥) = 1o ↔ (1oo suc 𝑦) = 1o))
7 oveq2 7263 . . 3 (𝑥 = 𝐴 → (1oo 𝑥) = (1oo 𝐴))
87eqeq1d 2740 . 2 (𝑥 = 𝐴 → ((1oo 𝑥) = 1o ↔ (1oo 𝐴) = 1o))
9 1on 8274 . . 3 1o ∈ On
10 oe0 8314 . . 3 (1o ∈ On → (1oo ∅) = 1o)
119, 10ax-mp 5 . 2 (1oo ∅) = 1o
12 oesuc 8319 . . . . 5 ((1o ∈ On ∧ 𝑦 ∈ On) → (1oo suc 𝑦) = ((1oo 𝑦) ·o 1o))
139, 12mpan 686 . . . 4 (𝑦 ∈ On → (1oo suc 𝑦) = ((1oo 𝑦) ·o 1o))
14 oveq1 7262 . . . . 5 ((1oo 𝑦) = 1o → ((1oo 𝑦) ·o 1o) = (1o ·o 1o))
15 om1 8335 . . . . . 6 (1o ∈ On → (1o ·o 1o) = 1o)
169, 15ax-mp 5 . . . . 5 (1o ·o 1o) = 1o
1714, 16eqtrdi 2795 . . . 4 ((1oo 𝑦) = 1o → ((1oo 𝑦) ·o 1o) = 1o)
1813, 17sylan9eq 2799 . . 3 ((𝑦 ∈ On ∧ (1oo 𝑦) = 1o) → (1oo suc 𝑦) = 1o)
1918ex 412 . 2 (𝑦 ∈ On → ((1oo 𝑦) = 1o → (1oo suc 𝑦) = 1o))
20 iuneq2 4940 . . 3 (∀𝑦𝑥 (1oo 𝑦) = 1o 𝑦𝑥 (1oo 𝑦) = 𝑦𝑥 1o)
21 vex 3426 . . . . . 6 𝑥 ∈ V
22 0lt1o 8296 . . . . . . . 8 ∅ ∈ 1o
23 oelim 8326 . . . . . . . 8 (((1o ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 1o) → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
2422, 23mpan2 687 . . . . . . 7 ((1o ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
259, 24mpan 686 . . . . . 6 ((𝑥 ∈ V ∧ Lim 𝑥) → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
2621, 25mpan 686 . . . . 5 (Lim 𝑥 → (1oo 𝑥) = 𝑦𝑥 (1oo 𝑦))
2726eqeq1d 2740 . . . 4 (Lim 𝑥 → ((1oo 𝑥) = 1o 𝑦𝑥 (1oo 𝑦) = 1o))
28 0ellim 6313 . . . . . 6 (Lim 𝑥 → ∅ ∈ 𝑥)
29 ne0i 4265 . . . . . 6 (∅ ∈ 𝑥𝑥 ≠ ∅)
30 iunconst 4930 . . . . . 6 (𝑥 ≠ ∅ → 𝑦𝑥 1o = 1o)
3128, 29, 303syl 18 . . . . 5 (Lim 𝑥 𝑦𝑥 1o = 1o)
3231eqeq2d 2749 . . . 4 (Lim 𝑥 → ( 𝑦𝑥 (1oo 𝑦) = 𝑦𝑥 1o 𝑦𝑥 (1oo 𝑦) = 1o))
3327, 32bitr4d 281 . . 3 (Lim 𝑥 → ((1oo 𝑥) = 1o 𝑦𝑥 (1oo 𝑦) = 𝑦𝑥 1o))
3420, 33syl5ibr 245 . 2 (Lim 𝑥 → (∀𝑦𝑥 (1oo 𝑦) = 1o → (1oo 𝑥) = 1o))
352, 4, 6, 8, 11, 19, 34tfinds 7681 1 (𝐴 ∈ On → (1oo 𝐴) = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  c0 4253   ciun 4921  Oncon0 6251  Lim wlim 6252  suc csuc 6253  (class class class)co 7255  1oc1o 8260   ·o comu 8265  o coe 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-oexp 8273
This theorem is referenced by:  oewordi  8384  oeoe  8392  cantnflem2  9378
  Copyright terms: Public domain W3C validator