Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoicvr Structured version   Visualization version   GIF version

Theorem hoicvr 45936
Description: 𝐼 is a countable set of half-open intervals that covers the whole multidimensional reals. See Definition 1135 (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
hoicvr.2 𝐼 = (𝑗 ∈ ℕ ↦ (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩))
hoicvr.3 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
hoicvr (𝜑 → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
Distinct variable groups:   𝑖,𝑋,𝑗,𝑥   𝜑,𝑖,𝑗,𝑥
Allowed substitution hints:   𝐼(𝑥,𝑖,𝑗)

Proof of Theorem hoicvr
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11230 . . . . . . 7 ℝ ∈ V
2 mapdm0 8861 . . . . . . 7 (ℝ ∈ V → (ℝ ↑m ∅) = {∅})
31, 2ax-mp 5 . . . . . 6 (ℝ ↑m ∅) = {∅}
43a1i 11 . . . . 5 (𝑋 = ∅ → (ℝ ↑m ∅) = {∅})
5 oveq2 7428 . . . . 5 (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
6 ixpeq1 8927 . . . . . . 7 (𝑋 = ∅ → X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) = X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖))
76iuneq2d 5025 . . . . . 6 (𝑋 = ∅ → 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) = 𝑗 ∈ ℕ X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖))
8 ixp0x 8945 . . . . . . . . . 10 X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖) = {∅}
98a1i 11 . . . . . . . . 9 (𝑗 ∈ ℕ → X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖) = {∅})
109iuneq2i 5017 . . . . . . . 8 𝑗 ∈ ℕ X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖) = 𝑗 ∈ ℕ {∅}
11 1nn 12254 . . . . . . . . . 10 1 ∈ ℕ
1211ne0ii 4338 . . . . . . . . 9 ℕ ≠ ∅
13 iunconst 5005 . . . . . . . . 9 (ℕ ≠ ∅ → 𝑗 ∈ ℕ {∅} = {∅})
1412, 13ax-mp 5 . . . . . . . 8 𝑗 ∈ ℕ {∅} = {∅}
1510, 14eqtri 2756 . . . . . . 7 𝑗 ∈ ℕ X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖) = {∅}
1615a1i 11 . . . . . 6 (𝑋 = ∅ → 𝑗 ∈ ℕ X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖) = {∅})
177, 16eqtrd 2768 . . . . 5 (𝑋 = ∅ → 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) = {∅})
184, 5, 173eqtr4d 2778 . . . 4 (𝑋 = ∅ → (ℝ ↑m 𝑋) = 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
19 eqimss 4038 . . . 4 ((ℝ ↑m 𝑋) = 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
2018, 19syl 17 . . 3 (𝑋 = ∅ → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
2120adantl 481 . 2 ((𝜑𝑋 = ∅) → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
22 simpll 766 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝜑)
23 simpr 484 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ (ℝ ↑m 𝑋))
24 simplr 768 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → ¬ 𝑋 = ∅)
25 rncoss 5975 . . . . . . . . . . 11 ran (abs ∘ 𝑓) ⊆ ran abs
26 absf 15317 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
27 frn 6729 . . . . . . . . . . . 12 (abs:ℂ⟶ℝ → ran abs ⊆ ℝ)
2826, 27ax-mp 5 . . . . . . . . . . 11 ran abs ⊆ ℝ
2925, 28sstri 3989 . . . . . . . . . 10 ran (abs ∘ 𝑓) ⊆ ℝ
3029a1i 11 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ran (abs ∘ 𝑓) ⊆ ℝ)
31 ltso 11325 . . . . . . . . . . 11 < Or ℝ
3231a1i 11 . . . . . . . . . 10 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → < Or ℝ)
3326a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → abs:ℂ⟶ℝ)
34 elmapi 8868 . . . . . . . . . . . . . . 15 (𝑓 ∈ (ℝ ↑m 𝑋) → 𝑓:𝑋⟶ℝ)
3534adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓:𝑋⟶ℝ)
36 ax-resscn 11196 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
3736a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → ℝ ⊆ ℂ)
3835, 37fssd 6740 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓:𝑋⟶ℂ)
39 fco 6747 . . . . . . . . . . . . 13 ((abs:ℂ⟶ℝ ∧ 𝑓:𝑋⟶ℂ) → (abs ∘ 𝑓):𝑋⟶ℝ)
4033, 38, 39syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → (abs ∘ 𝑓):𝑋⟶ℝ)
41 hoicvr.3 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ Fin)
4241adantr 480 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑋 ∈ Fin)
43 rnffi 44548 . . . . . . . . . . . 12 (((abs ∘ 𝑓):𝑋⟶ℝ ∧ 𝑋 ∈ Fin) → ran (abs ∘ 𝑓) ∈ Fin)
4440, 42, 43syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → ran (abs ∘ 𝑓) ∈ Fin)
4544adantr 480 . . . . . . . . . 10 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ran (abs ∘ 𝑓) ∈ Fin)
4634frnd 6730 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℝ ↑m 𝑋) → ran 𝑓 ⊆ ℝ)
4726fdmi 6734 . . . . . . . . . . . . . . . . . . . . . 22 dom abs = ℂ
4847eqcomi 2737 . . . . . . . . . . . . . . . . . . . . 21 ℂ = dom abs
4936, 48sseqtri 4016 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ dom abs
5049a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℝ ↑m 𝑋) → ℝ ⊆ dom abs)
5146, 50sstrd 3990 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ (ℝ ↑m 𝑋) → ran 𝑓 ⊆ dom abs)
52 dmcosseq 5976 . . . . . . . . . . . . . . . . . 18 (ran 𝑓 ⊆ dom abs → dom (abs ∘ 𝑓) = dom 𝑓)
5351, 52syl 17 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (ℝ ↑m 𝑋) → dom (abs ∘ 𝑓) = dom 𝑓)
5434fdmd 6733 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (ℝ ↑m 𝑋) → dom 𝑓 = 𝑋)
5553, 54eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (ℝ ↑m 𝑋) → dom (abs ∘ 𝑓) = 𝑋)
5655adantr 480 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ ¬ 𝑋 = ∅) → dom (abs ∘ 𝑓) = 𝑋)
57 neqne 2945 . . . . . . . . . . . . . . . 16 𝑋 = ∅ → 𝑋 ≠ ∅)
5857adantl 481 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
5956, 58eqnetrd 3005 . . . . . . . . . . . . . 14 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ ¬ 𝑋 = ∅) → dom (abs ∘ 𝑓) ≠ ∅)
6059neneqd 2942 . . . . . . . . . . . . 13 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ ¬ 𝑋 = ∅) → ¬ dom (abs ∘ 𝑓) = ∅)
61 dm0rn0 5927 . . . . . . . . . . . . 13 (dom (abs ∘ 𝑓) = ∅ ↔ ran (abs ∘ 𝑓) = ∅)
6260, 61sylnib 328 . . . . . . . . . . . 12 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ ¬ 𝑋 = ∅) → ¬ ran (abs ∘ 𝑓) = ∅)
6362neqned 2944 . . . . . . . . . . 11 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ ¬ 𝑋 = ∅) → ran (abs ∘ 𝑓) ≠ ∅)
6463adantll 713 . . . . . . . . . 10 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ran (abs ∘ 𝑓) ≠ ∅)
65 fisupcl 9493 . . . . . . . . . 10 (( < Or ℝ ∧ (ran (abs ∘ 𝑓) ∈ Fin ∧ ran (abs ∘ 𝑓) ≠ ∅ ∧ ran (abs ∘ 𝑓) ⊆ ℝ)) → sup(ran (abs ∘ 𝑓), ℝ, < ) ∈ ran (abs ∘ 𝑓))
6632, 45, 64, 30, 65syl13anc 1370 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → sup(ran (abs ∘ 𝑓), ℝ, < ) ∈ ran (abs ∘ 𝑓))
6730, 66sseldd 3981 . . . . . . . 8 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → sup(ran (abs ∘ 𝑓), ℝ, < ) ∈ ℝ)
68 arch 12500 . . . . . . . 8 (sup(ran (abs ∘ 𝑓), ℝ, < ) ∈ ℝ → ∃𝑗 ∈ ℕ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗)
6967, 68syl 17 . . . . . . 7 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ∃𝑗 ∈ ℕ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗)
7035ffnd 6723 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 Fn 𝑋)
7170ad2antrr 725 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓 Fn 𝑋)
7271adantlr 714 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓 Fn 𝑋)
73 simplll 774 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝜑𝑓 ∈ (ℝ ↑m 𝑋)))
74 id 22 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
7574ad3antlr 730 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → 𝑗 ∈ ℕ)
76 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗)
77 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → 𝑖𝑋)
78 simp2 1135 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑗 ∈ ℕ)
79 zssre 12596 . . . . . . . . . . . . . . . . . . . . 21 ℤ ⊆ ℝ
80 ressxr 11289 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℝ*
8179, 80sstri 3989 . . . . . . . . . . . . . . . . . . . 20 ℤ ⊆ ℝ*
82 nnnegz 12592 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → -𝑗 ∈ ℤ)
8381, 82sselid 3978 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → -𝑗 ∈ ℝ*)
8483adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ 𝑖𝑋) → -𝑗 ∈ ℝ*)
8578, 84sylan 579 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -𝑗 ∈ ℝ*)
8674nnxrd 44655 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ*)
8786adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ 𝑖𝑋) → 𝑗 ∈ ℝ*)
8878, 87sylan 579 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → 𝑗 ∈ ℝ*)
89343ad2ant1 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓:𝑋⟶ℝ)
9080a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → ℝ ⊆ ℝ*)
9189, 90fssd 6740 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓:𝑋⟶ℝ*)
92913adant1l 1174 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓:𝑋⟶ℝ*)
9392ffvelcdmda 7094 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ*)
94 nnre 12250 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
9594adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑖𝑋) → 𝑗 ∈ ℝ)
96953ad2antl2 1184 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → 𝑗 ∈ ℝ)
9796renegcld 11672 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -𝑗 ∈ ℝ)
9835ffvelcdmda 7094 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
99983ad2antl1 1183 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
10099renegcld 11672 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -(𝑓𝑖) ∈ ℝ)
101 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝜑)
102 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝑓 ∈ (ℝ ↑m 𝑋))
103 n0i 4334 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖𝑋 → ¬ 𝑋 = ∅)
104103adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ¬ 𝑋 = ∅)
105101, 102, 104, 67syl21anc 837 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → sup(ran (abs ∘ 𝑓), ℝ, < ) ∈ ℝ)
1061053ad2antl1 1183 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → sup(ran (abs ∘ 𝑓), ℝ, < ) ∈ ℝ)
10734ffvelcdmda 7094 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
10836, 107sselid 3978 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℂ)
109108abscld 15416 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ∈ ℝ)
110109adantll 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ∈ ℝ)
1111103ad2antl1 1183 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ∈ ℝ)
112107renegcld 11672 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → -(𝑓𝑖) ∈ ℝ)
113112leabsd 15394 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → -(𝑓𝑖) ≤ (abs‘-(𝑓𝑖)))
114108absnegd 15429 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (abs‘-(𝑓𝑖)) = (abs‘(𝑓𝑖)))
115113, 114breqtrd 5174 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → -(𝑓𝑖) ≤ (abs‘(𝑓𝑖)))
116115adantll 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → -(𝑓𝑖) ≤ (abs‘(𝑓𝑖)))
1171163ad2antl1 1183 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -(𝑓𝑖) ≤ (abs‘(𝑓𝑖)))
11829a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → ran (abs ∘ 𝑓) ⊆ ℝ)
119104, 64syldan 590 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ran (abs ∘ 𝑓) ≠ ∅)
1201193ad2antl1 1183 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → ran (abs ∘ 𝑓) ≠ ∅)
121 fimaxre2 12190 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ran (abs ∘ 𝑓) ⊆ ℝ ∧ ran (abs ∘ 𝑓) ∈ Fin) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧𝑦)
12229, 44, 121sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧𝑦)
123122adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧𝑦)
1241233ad2antl1 1183 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧𝑦)
125 elmapfun 8885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 ∈ (ℝ ↑m 𝑋) → Fun 𝑓)
126125adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → Fun 𝑓)
127 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → 𝑖𝑋)
12854eqcomd 2734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓 ∈ (ℝ ↑m 𝑋) → 𝑋 = dom 𝑓)
129128adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → 𝑋 = dom 𝑓)
130127, 129eleqtrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → 𝑖 ∈ dom 𝑓)
131 fvco 6996 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun 𝑓𝑖 ∈ dom 𝑓) → ((abs ∘ 𝑓)‘𝑖) = (abs‘(𝑓𝑖)))
132126, 130, 131syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → ((abs ∘ 𝑓)‘𝑖) = (abs‘(𝑓𝑖)))
133132eqcomd 2734 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) = ((abs ∘ 𝑓)‘𝑖))
134 absfun 44732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Fun abs
135134a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 ∈ (ℝ ↑m 𝑋) → Fun abs)
136 funco 6593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Fun abs ∧ Fun 𝑓) → Fun (abs ∘ 𝑓))
137135, 125, 136syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 ∈ (ℝ ↑m 𝑋) → Fun (abs ∘ 𝑓))
138137adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → Fun (abs ∘ 𝑓))
139108, 48eleqtrdi 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ dom abs)
140 dmfco 6994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Fun 𝑓𝑖 ∈ dom 𝑓) → (𝑖 ∈ dom (abs ∘ 𝑓) ↔ (𝑓𝑖) ∈ dom abs))
141126, 130, 140syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (𝑖 ∈ dom (abs ∘ 𝑓) ↔ (𝑓𝑖) ∈ dom abs))
142139, 141mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → 𝑖 ∈ dom (abs ∘ 𝑓))
143 fvelrn 7086 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun (abs ∘ 𝑓) ∧ 𝑖 ∈ dom (abs ∘ 𝑓)) → ((abs ∘ 𝑓)‘𝑖) ∈ ran (abs ∘ 𝑓))
144138, 142, 143syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → ((abs ∘ 𝑓)‘𝑖) ∈ ran (abs ∘ 𝑓))
145133, 144eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ∈ ran (abs ∘ 𝑓))
146145adantll 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ∈ ran (abs ∘ 𝑓))
1471463ad2antl1 1183 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ∈ ran (abs ∘ 𝑓))
148 suprub 12206 . . . . . . . . . . . . . . . . . . . . . . 23 (((ran (abs ∘ 𝑓) ⊆ ℝ ∧ ran (abs ∘ 𝑓) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧𝑦) ∧ (abs‘(𝑓𝑖)) ∈ ran (abs ∘ 𝑓)) → (abs‘(𝑓𝑖)) ≤ sup(ran (abs ∘ 𝑓), ℝ, < ))
149118, 120, 124, 147, 148syl31anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ≤ sup(ran (abs ∘ 𝑓), ℝ, < ))
150100, 111, 106, 117, 149letrd 11402 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -(𝑓𝑖) ≤ sup(ran (abs ∘ 𝑓), ℝ, < ))
151 simpl3 1191 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗)
152100, 106, 96, 150, 151lelttrd 11403 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -(𝑓𝑖) < 𝑗)
153100, 96ltnegd 11823 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (-(𝑓𝑖) < 𝑗 ↔ -𝑗 < --(𝑓𝑖)))
154152, 153mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -𝑗 < --(𝑓𝑖))
15536, 99sselid 3978 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℂ)
156155negnegd 11593 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → --(𝑓𝑖) = (𝑓𝑖))
157154, 156breqtrd 5174 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -𝑗 < (𝑓𝑖))
15897, 99, 157ltled 11393 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -𝑗 ≤ (𝑓𝑖))
15999leabsd 15394 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ≤ (abs‘(𝑓𝑖)))
16099, 111, 106, 159, 149letrd 11402 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ≤ sup(ran (abs ∘ 𝑓), ℝ, < ))
16199, 106, 96, 160, 151lelttrd 11403 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) < 𝑗)
16285, 88, 93, 158, 161elicod 13407 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-𝑗[,)𝑗))
16373, 75, 76, 77, 162syl31anc 1371 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-𝑗[,)𝑗))
164163adantl3r 749 . . . . . . . . . . . . . 14 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-𝑗[,)𝑗))
165 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
166 mptexg 7233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋 ∈ Fin → (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V)
16741, 166syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V)
168167adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V)
169 hoicvr.2 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐼 = (𝑗 ∈ ℕ ↦ (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩))
170169fvmpt2 7016 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℕ ∧ (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V) → (𝐼𝑗) = (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩))
171165, 168, 170syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) = (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩))
172171fveq1d 6899 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ) → ((𝐼𝑗)‘𝑖) = ((𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑖))
1731723adant3 1130 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → ((𝐼𝑗)‘𝑖) = ((𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑖))
174 eqidd 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖𝑋 → (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩) = (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩))
175 eqid 2728 . . . . . . . . . . . . . . . . . . . . . . . 24 ⟨-𝑗, 𝑗⟩ = ⟨-𝑗, 𝑗
176175a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖𝑋𝑥 = 𝑖) → ⟨-𝑗, 𝑗⟩ = ⟨-𝑗, 𝑗⟩)
177 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖𝑋𝑖𝑋)
178 opex 5466 . . . . . . . . . . . . . . . . . . . . . . . 24 ⟨-𝑗, 𝑗⟩ ∈ V
179178a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖𝑋 → ⟨-𝑗, 𝑗⟩ ∈ V)
180174, 176, 177, 179fvmptd 7012 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖𝑋 → ((𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑖) = ⟨-𝑗, 𝑗⟩)
1811803ad2ant3 1133 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → ((𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑖) = ⟨-𝑗, 𝑗⟩)
182173, 181eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → ((𝐼𝑗)‘𝑖) = ⟨-𝑗, 𝑗⟩)
183182fveq2d 6901 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (1st ‘((𝐼𝑗)‘𝑖)) = (1st ‘⟨-𝑗, 𝑗⟩))
184 negex 11489 . . . . . . . . . . . . . . . . . . . . 21 -𝑗 ∈ V
185 vex 3475 . . . . . . . . . . . . . . . . . . . . 21 𝑗 ∈ V
186184, 185op1st 8001 . . . . . . . . . . . . . . . . . . . 20 (1st ‘⟨-𝑗, 𝑗⟩) = -𝑗
187186a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (1st ‘⟨-𝑗, 𝑗⟩) = -𝑗)
188183, 187eqtrd 2768 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (1st ‘((𝐼𝑗)‘𝑖)) = -𝑗)
189182fveq2d 6901 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (2nd ‘((𝐼𝑗)‘𝑖)) = (2nd ‘⟨-𝑗, 𝑗⟩))
190184, 185op2nd 8002 . . . . . . . . . . . . . . . . . . . 20 (2nd ‘⟨-𝑗, 𝑗⟩) = 𝑗
191190a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (2nd ‘⟨-𝑗, 𝑗⟩) = 𝑗)
192189, 191eqtrd 2768 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (2nd ‘((𝐼𝑗)‘𝑖)) = 𝑗)
193188, 192oveq12d 7438 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))) = (-𝑗[,)𝑗))
194193eqcomd 2734 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (-𝑗[,)𝑗) = ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))))
1951943adant1r 1175 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ 𝑖𝑋) → (-𝑗[,)𝑗) = ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))))
196195ad5ant135 1366 . . . . . . . . . . . . . 14 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (-𝑗[,)𝑗) = ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))))
197164, 196eleqtrd 2831 . . . . . . . . . . . . 13 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))))
19879, 82sselid 3978 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → -𝑗 ∈ ℝ)
199 opelxpi 5715 . . . . . . . . . . . . . . . . . . . . 21 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
200198, 94, 199syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
201200ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥𝑋) → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
202 eqid 2728 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩) = (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩)
203201, 202fmptd 7124 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ))
204171feq1d 6707 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → ((𝐼𝑗):𝑋⟶(ℝ × ℝ) ↔ (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
205203, 204mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
206205ad4ant14 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
207206ad2antrr 725 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
208 simpr 484 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → 𝑖𝑋)
209207, 208fvovco 44566 . . . . . . . . . . . . . 14 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (([,) ∘ (𝐼𝑗))‘𝑖) = ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))))
210209eqcomd 2734 . . . . . . . . . . . . 13 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))) = (([,) ∘ (𝐼𝑗))‘𝑖))
211197, 210eleqtrd 2831 . . . . . . . . . . . 12 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (([,) ∘ (𝐼𝑗))‘𝑖))
212211ralrimiva 3143 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → ∀𝑖𝑋 (𝑓𝑖) ∈ (([,) ∘ (𝐼𝑗))‘𝑖))
21372, 212jca 511 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ (([,) ∘ (𝐼𝑗))‘𝑖)))
214 vex 3475 . . . . . . . . . . 11 𝑓 ∈ V
215214elixp 8923 . . . . . . . . . 10 (𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ (([,) ∘ (𝐼𝑗))‘𝑖)))
216213, 215sylibr 233 . . . . . . . . 9 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
217216ex 412 . . . . . . . 8 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) → (sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖)))
218217reximdva 3165 . . . . . . 7 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → (∃𝑗 ∈ ℕ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗 → ∃𝑗 ∈ ℕ 𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖)))
21969, 218mpd 15 . . . . . 6 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ∃𝑗 ∈ ℕ 𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
22022, 23, 24, 219syl21anc 837 . . . . 5 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → ∃𝑗 ∈ ℕ 𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
221 eliun 5000 . . . . 5 (𝑓 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) ↔ ∃𝑗 ∈ ℕ 𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
222220, 221sylibr 233 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
223222ralrimiva 3143 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∀𝑓 ∈ (ℝ ↑m 𝑋)𝑓 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
224 dfss3 3968 . . 3 ((ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) ↔ ∀𝑓 ∈ (ℝ ↑m 𝑋)𝑓 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
225223, 224sylibr 233 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
22621, 225pm2.61dan 812 1 (𝜑 → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wral 3058  wrex 3067  Vcvv 3471  wss 3947  c0 4323  {csn 4629  cop 4635   ciun 4996   class class class wbr 5148  cmpt 5231   Or wor 5589   × cxp 5676  dom cdm 5678  ran crn 5679  ccom 5682  Fun wfun 6542   Fn wfn 6543  wf 6544  cfv 6548  (class class class)co 7420  1st c1st 7991  2nd c2nd 7992  m cmap 8845  Xcixp 8916  Fincfn 8964  supcsup 9464  cc 11137  cr 11138  1c1 11140  *cxr 11278   < clt 11279  cle 11280  -cneg 11476  cn 12243  cz 12589  [,)cico 13359  abscabs 15214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-ico 13363  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216
This theorem is referenced by:  hoicvrrex  45944
  Copyright terms: Public domain W3C validator