Step | Hyp | Ref
| Expression |
1 | | reex 10962 |
. . . . . . 7
⊢ ℝ
∈ V |
2 | | mapdm0 8630 |
. . . . . . 7
⊢ (ℝ
∈ V → (ℝ ↑m ∅) =
{∅}) |
3 | 1, 2 | ax-mp 5 |
. . . . . 6
⊢ (ℝ
↑m ∅) = {∅} |
4 | 3 | a1i 11 |
. . . . 5
⊢ (𝑋 = ∅ → (ℝ
↑m ∅) = {∅}) |
5 | | oveq2 7283 |
. . . . 5
⊢ (𝑋 = ∅ → (ℝ
↑m 𝑋) =
(ℝ ↑m ∅)) |
6 | | ixpeq1 8696 |
. . . . . . 7
⊢ (𝑋 = ∅ → X𝑖 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖) = X𝑖 ∈ ∅ (([,) ∘
(𝐼‘𝑗))‘𝑖)) |
7 | 6 | iuneq2d 4953 |
. . . . . 6
⊢ (𝑋 = ∅ → ∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖) = ∪ 𝑗 ∈ ℕ X𝑖 ∈
∅ (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
8 | | ixp0x 8714 |
. . . . . . . . . 10
⊢ X𝑖 ∈
∅ (([,) ∘ (𝐼‘𝑗))‘𝑖) = {∅} |
9 | 8 | a1i 11 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → X𝑖 ∈
∅ (([,) ∘ (𝐼‘𝑗))‘𝑖) = {∅}) |
10 | 9 | iuneq2i 4945 |
. . . . . . . 8
⊢ ∪ 𝑗 ∈ ℕ X𝑖 ∈ ∅ (([,) ∘
(𝐼‘𝑗))‘𝑖) = ∪ 𝑗 ∈ ℕ
{∅} |
11 | | 1nn 11984 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ |
12 | 11 | ne0ii 4271 |
. . . . . . . . 9
⊢ ℕ
≠ ∅ |
13 | | iunconst 4933 |
. . . . . . . . 9
⊢ (ℕ
≠ ∅ → ∪ 𝑗 ∈ ℕ {∅} =
{∅}) |
14 | 12, 13 | ax-mp 5 |
. . . . . . . 8
⊢ ∪ 𝑗 ∈ ℕ {∅} =
{∅} |
15 | 10, 14 | eqtri 2766 |
. . . . . . 7
⊢ ∪ 𝑗 ∈ ℕ X𝑖 ∈ ∅ (([,) ∘
(𝐼‘𝑗))‘𝑖) = {∅} |
16 | 15 | a1i 11 |
. . . . . 6
⊢ (𝑋 = ∅ → ∪ 𝑗 ∈ ℕ X𝑖 ∈ ∅ (([,) ∘
(𝐼‘𝑗))‘𝑖) = {∅}) |
17 | 7, 16 | eqtrd 2778 |
. . . . 5
⊢ (𝑋 = ∅ → ∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖) = {∅}) |
18 | 4, 5, 17 | 3eqtr4d 2788 |
. . . 4
⊢ (𝑋 = ∅ → (ℝ
↑m 𝑋) =
∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
19 | | eqimss 3977 |
. . . 4
⊢ ((ℝ
↑m 𝑋) =
∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖) → (ℝ ↑m 𝑋) ⊆ ∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
20 | 18, 19 | syl 17 |
. . 3
⊢ (𝑋 = ∅ → (ℝ
↑m 𝑋)
⊆ ∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
21 | 20 | adantl 482 |
. 2
⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ
↑m 𝑋)
⊆ ∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
22 | | simpll 764 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝜑) |
23 | | simpr 485 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ (ℝ ↑m 𝑋)) |
24 | | simplr 766 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → ¬ 𝑋 = ∅) |
25 | | rncoss 5881 |
. . . . . . . . . . 11
⊢ ran (abs
∘ 𝑓) ⊆ ran
abs |
26 | | absf 15049 |
. . . . . . . . . . . 12
⊢
abs:ℂ⟶ℝ |
27 | | frn 6607 |
. . . . . . . . . . . 12
⊢
(abs:ℂ⟶ℝ → ran abs ⊆
ℝ) |
28 | 26, 27 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ran abs
⊆ ℝ |
29 | 25, 28 | sstri 3930 |
. . . . . . . . . 10
⊢ ran (abs
∘ 𝑓) ⊆
ℝ |
30 | 29 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ran (abs ∘ 𝑓) ⊆
ℝ) |
31 | | ltso 11055 |
. . . . . . . . . . 11
⊢ < Or
ℝ |
32 | 31 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → < Or
ℝ) |
33 | 26 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) →
abs:ℂ⟶ℝ) |
34 | | elmapi 8637 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (ℝ
↑m 𝑋)
→ 𝑓:𝑋⟶ℝ) |
35 | 34 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓:𝑋⟶ℝ) |
36 | | ax-resscn 10928 |
. . . . . . . . . . . . . . 15
⊢ ℝ
⊆ ℂ |
37 | 36 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → ℝ ⊆
ℂ) |
38 | 35, 37 | fssd 6618 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓:𝑋⟶ℂ) |
39 | | fco 6624 |
. . . . . . . . . . . . 13
⊢
((abs:ℂ⟶ℝ ∧ 𝑓:𝑋⟶ℂ) → (abs ∘ 𝑓):𝑋⟶ℝ) |
40 | 33, 38, 39 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → (abs ∘ 𝑓):𝑋⟶ℝ) |
41 | | hoicvr.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ Fin) |
42 | 41 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑋 ∈ Fin) |
43 | | rnffi 42711 |
. . . . . . . . . . . 12
⊢ (((abs
∘ 𝑓):𝑋⟶ℝ ∧ 𝑋 ∈ Fin) → ran (abs
∘ 𝑓) ∈
Fin) |
44 | 40, 42, 43 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → ran (abs ∘ 𝑓) ∈ Fin) |
45 | 44 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ran (abs ∘ 𝑓) ∈ Fin) |
46 | 34 | frnd 6608 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ (ℝ
↑m 𝑋)
→ ran 𝑓 ⊆
ℝ) |
47 | 26 | fdmi 6612 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ dom abs =
ℂ |
48 | 47 | eqcomi 2747 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℂ =
dom abs |
49 | 36, 48 | sseqtri 3957 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℝ
⊆ dom abs |
50 | 49 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ (ℝ
↑m 𝑋)
→ ℝ ⊆ dom abs) |
51 | 46, 50 | sstrd 3931 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ (ℝ
↑m 𝑋)
→ ran 𝑓 ⊆ dom
abs) |
52 | | dmcosseq 5882 |
. . . . . . . . . . . . . . . . . 18
⊢ (ran
𝑓 ⊆ dom abs →
dom (abs ∘ 𝑓) = dom
𝑓) |
53 | 51, 52 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ (ℝ
↑m 𝑋)
→ dom (abs ∘ 𝑓)
= dom 𝑓) |
54 | 34 | fdmd 6611 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ (ℝ
↑m 𝑋)
→ dom 𝑓 = 𝑋) |
55 | 53, 54 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (ℝ
↑m 𝑋)
→ dom (abs ∘ 𝑓)
= 𝑋) |
56 | 55 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
¬ 𝑋 = ∅) →
dom (abs ∘ 𝑓) = 𝑋) |
57 | | neqne 2951 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑋 = ∅ → 𝑋 ≠ ∅) |
58 | 57 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
¬ 𝑋 = ∅) →
𝑋 ≠
∅) |
59 | 56, 58 | eqnetrd 3011 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
¬ 𝑋 = ∅) →
dom (abs ∘ 𝑓) ≠
∅) |
60 | 59 | neneqd 2948 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
¬ 𝑋 = ∅) →
¬ dom (abs ∘ 𝑓) =
∅) |
61 | | dm0rn0 5834 |
. . . . . . . . . . . . 13
⊢ (dom (abs
∘ 𝑓) = ∅ ↔
ran (abs ∘ 𝑓) =
∅) |
62 | 60, 61 | sylnib 328 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
¬ 𝑋 = ∅) →
¬ ran (abs ∘ 𝑓) =
∅) |
63 | 62 | neqned 2950 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
¬ 𝑋 = ∅) →
ran (abs ∘ 𝑓) ≠
∅) |
64 | 63 | adantll 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ran (abs ∘ 𝑓) ≠ ∅) |
65 | | fisupcl 9228 |
. . . . . . . . . 10
⊢ (( <
Or ℝ ∧ (ran (abs ∘ 𝑓) ∈ Fin ∧ ran (abs ∘ 𝑓) ≠ ∅ ∧ ran (abs
∘ 𝑓) ⊆
ℝ)) → sup(ran (abs ∘ 𝑓), ℝ, < ) ∈ ran (abs ∘
𝑓)) |
66 | 32, 45, 64, 30, 65 | syl13anc 1371 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → sup(ran (abs ∘
𝑓), ℝ, < ) ∈
ran (abs ∘ 𝑓)) |
67 | 30, 66 | sseldd 3922 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → sup(ran (abs ∘
𝑓), ℝ, < ) ∈
ℝ) |
68 | | arch 12230 |
. . . . . . . 8
⊢ (sup(ran
(abs ∘ 𝑓), ℝ,
< ) ∈ ℝ → ∃𝑗 ∈ ℕ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) |
69 | 67, 68 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ∃𝑗 ∈ ℕ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) |
70 | 35 | ffnd 6601 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 Fn 𝑋) |
71 | 70 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓 Fn 𝑋) |
72 | 71 | adantlr 712 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ ¬ 𝑋 = ∅)
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓 Fn 𝑋) |
73 | | simplll 772 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖 ∈ 𝑋) → (𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋))) |
74 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ) |
75 | 74 | ad3antlr 728 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖 ∈ 𝑋) → 𝑗 ∈ ℕ) |
76 | | simplr 766 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖 ∈ 𝑋) → sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) |
77 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖 ∈ 𝑋) → 𝑖 ∈ 𝑋) |
78 | | simp2 1136 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) → 𝑗 ∈
ℕ) |
79 | | zssre 12326 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℤ
⊆ ℝ |
80 | | ressxr 11019 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℝ
⊆ ℝ* |
81 | 79, 80 | sstri 3930 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℤ
⊆ ℝ* |
82 | | nnnegz 12322 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ → -𝑗 ∈
ℤ) |
83 | 81, 82 | sselid 3919 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → -𝑗 ∈
ℝ*) |
84 | 83 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → -𝑗 ∈ ℝ*) |
85 | 78, 84 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → -𝑗 ∈ ℝ*) |
86 | 74 | nnxrd 42585 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ*) |
87 | 86 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → 𝑗 ∈ ℝ*) |
88 | 78, 87 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → 𝑗 ∈ ℝ*) |
89 | 34 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑗 ∈ ℕ ∧
sup(ran (abs ∘ 𝑓),
ℝ, < ) < 𝑗)
→ 𝑓:𝑋⟶ℝ) |
90 | 80 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑗 ∈ ℕ ∧
sup(ran (abs ∘ 𝑓),
ℝ, < ) < 𝑗)
→ ℝ ⊆ ℝ*) |
91 | 89, 90 | fssd 6618 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑗 ∈ ℕ ∧
sup(ran (abs ∘ 𝑓),
ℝ, < ) < 𝑗)
→ 𝑓:𝑋⟶ℝ*) |
92 | 91 | 3adant1l 1175 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) → 𝑓:𝑋⟶ℝ*) |
93 | 92 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → (𝑓‘𝑖) ∈
ℝ*) |
94 | | nnre 11980 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ) |
95 | 94 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → 𝑗 ∈ ℝ) |
96 | 95 | 3ad2antl2 1185 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → 𝑗 ∈ ℝ) |
97 | 96 | renegcld 11402 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → -𝑗 ∈ ℝ) |
98 | 35 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖 ∈ 𝑋) → (𝑓‘𝑖) ∈ ℝ) |
99 | 98 | 3ad2antl1 1184 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → (𝑓‘𝑖) ∈ ℝ) |
100 | 99 | renegcld 11402 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → -(𝑓‘𝑖) ∈ ℝ) |
101 | | simpll 764 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖 ∈ 𝑋) → 𝜑) |
102 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖 ∈ 𝑋) → 𝑓 ∈ (ℝ ↑m 𝑋)) |
103 | | n0i 4267 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ 𝑋 → ¬ 𝑋 = ∅) |
104 | 103 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖 ∈ 𝑋) → ¬ 𝑋 = ∅) |
105 | 101, 102,
104, 67 | syl21anc 835 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖 ∈ 𝑋) → sup(ran (abs ∘ 𝑓), ℝ, < ) ∈
ℝ) |
106 | 105 | 3ad2antl1 1184 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → sup(ran (abs ∘ 𝑓), ℝ, < ) ∈
ℝ) |
107 | 34 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → (𝑓‘𝑖) ∈ ℝ) |
108 | 36, 107 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → (𝑓‘𝑖) ∈ ℂ) |
109 | 108 | abscld 15148 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → (abs‘(𝑓‘𝑖)) ∈ ℝ) |
110 | 109 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖 ∈ 𝑋) → (abs‘(𝑓‘𝑖)) ∈ ℝ) |
111 | 110 | 3ad2antl1 1184 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → (abs‘(𝑓‘𝑖)) ∈ ℝ) |
112 | 107 | renegcld 11402 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → -(𝑓‘𝑖) ∈ ℝ) |
113 | 112 | leabsd 15126 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → -(𝑓‘𝑖) ≤ (abs‘-(𝑓‘𝑖))) |
114 | 108 | absnegd 15161 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → (abs‘-(𝑓‘𝑖)) = (abs‘(𝑓‘𝑖))) |
115 | 113, 114 | breqtrd 5100 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → -(𝑓‘𝑖) ≤ (abs‘(𝑓‘𝑖))) |
116 | 115 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖 ∈ 𝑋) → -(𝑓‘𝑖) ≤ (abs‘(𝑓‘𝑖))) |
117 | 116 | 3ad2antl1 1184 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → -(𝑓‘𝑖) ≤ (abs‘(𝑓‘𝑖))) |
118 | 29 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → ran (abs ∘ 𝑓) ⊆ ℝ) |
119 | 104, 64 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖 ∈ 𝑋) → ran (abs ∘ 𝑓) ≠ ∅) |
120 | 119 | 3ad2antl1 1184 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → ran (abs ∘ 𝑓) ≠ ∅) |
121 | | fimaxre2 11920 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((ran
(abs ∘ 𝑓) ⊆
ℝ ∧ ran (abs ∘ 𝑓) ∈ Fin) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧 ≤ 𝑦) |
122 | 29, 44, 121 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧 ≤ 𝑦) |
123 | 122 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖 ∈ 𝑋) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧 ≤ 𝑦) |
124 | 123 | 3ad2antl1 1184 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧 ≤ 𝑦) |
125 | | elmapfun 8654 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓 ∈ (ℝ
↑m 𝑋)
→ Fun 𝑓) |
126 | 125 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → Fun 𝑓) |
127 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → 𝑖 ∈ 𝑋) |
128 | 54 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓 ∈ (ℝ
↑m 𝑋)
→ 𝑋 = dom 𝑓) |
129 | 128 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → 𝑋 = dom 𝑓) |
130 | 127, 129 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → 𝑖 ∈ dom 𝑓) |
131 | | fvco 6866 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((Fun
𝑓 ∧ 𝑖 ∈ dom 𝑓) → ((abs ∘ 𝑓)‘𝑖) = (abs‘(𝑓‘𝑖))) |
132 | 126, 130,
131 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → ((abs ∘ 𝑓)‘𝑖) = (abs‘(𝑓‘𝑖))) |
133 | 132 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → (abs‘(𝑓‘𝑖)) = ((abs ∘ 𝑓)‘𝑖)) |
134 | | absfun 42889 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ Fun
abs |
135 | 134 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓 ∈ (ℝ
↑m 𝑋)
→ Fun abs) |
136 | | funco 6474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((Fun abs
∧ Fun 𝑓) → Fun
(abs ∘ 𝑓)) |
137 | 135, 125,
136 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓 ∈ (ℝ
↑m 𝑋)
→ Fun (abs ∘ 𝑓)) |
138 | 137 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → Fun (abs ∘ 𝑓)) |
139 | 108, 48 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → (𝑓‘𝑖) ∈ dom abs) |
140 | | dmfco 6864 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((Fun
𝑓 ∧ 𝑖 ∈ dom 𝑓) → (𝑖 ∈ dom (abs ∘ 𝑓) ↔ (𝑓‘𝑖) ∈ dom abs)) |
141 | 126, 130,
140 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → (𝑖 ∈ dom (abs ∘ 𝑓) ↔ (𝑓‘𝑖) ∈ dom abs)) |
142 | 139, 141 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → 𝑖 ∈ dom (abs ∘ 𝑓)) |
143 | | fvelrn 6954 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((Fun
(abs ∘ 𝑓) ∧ 𝑖 ∈ dom (abs ∘ 𝑓)) → ((abs ∘ 𝑓)‘𝑖) ∈ ran (abs ∘ 𝑓)) |
144 | 138, 142,
143 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → ((abs ∘ 𝑓)‘𝑖) ∈ ran (abs ∘ 𝑓)) |
145 | 133, 144 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ (ℝ
↑m 𝑋) ∧
𝑖 ∈ 𝑋) → (abs‘(𝑓‘𝑖)) ∈ ran (abs ∘ 𝑓)) |
146 | 145 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖 ∈ 𝑋) → (abs‘(𝑓‘𝑖)) ∈ ran (abs ∘ 𝑓)) |
147 | 146 | 3ad2antl1 1184 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → (abs‘(𝑓‘𝑖)) ∈ ran (abs ∘ 𝑓)) |
148 | | suprub 11936 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((ran
(abs ∘ 𝑓) ⊆
ℝ ∧ ran (abs ∘ 𝑓) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧 ≤ 𝑦) ∧ (abs‘(𝑓‘𝑖)) ∈ ran (abs ∘ 𝑓)) → (abs‘(𝑓‘𝑖)) ≤ sup(ran (abs ∘ 𝑓), ℝ, <
)) |
149 | 118, 120,
124, 147, 148 | syl31anc 1372 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → (abs‘(𝑓‘𝑖)) ≤ sup(ran (abs ∘ 𝑓), ℝ, <
)) |
150 | 100, 111,
106, 117, 149 | letrd 11132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → -(𝑓‘𝑖) ≤ sup(ran (abs ∘ 𝑓), ℝ, <
)) |
151 | | simpl3 1192 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) |
152 | 100, 106,
96, 150, 151 | lelttrd 11133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → -(𝑓‘𝑖) < 𝑗) |
153 | 100, 96 | ltnegd 11553 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → (-(𝑓‘𝑖) < 𝑗 ↔ -𝑗 < --(𝑓‘𝑖))) |
154 | 152, 153 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → -𝑗 < --(𝑓‘𝑖)) |
155 | 36, 99 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → (𝑓‘𝑖) ∈ ℂ) |
156 | 155 | negnegd 11323 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → --(𝑓‘𝑖) = (𝑓‘𝑖)) |
157 | 154, 156 | breqtrd 5100 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → -𝑗 < (𝑓‘𝑖)) |
158 | 97, 99, 157 | ltled 11123 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → -𝑗 ≤ (𝑓‘𝑖)) |
159 | 99 | leabsd 15126 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → (𝑓‘𝑖) ≤ (abs‘(𝑓‘𝑖))) |
160 | 99, 111, 106, 159, 149 | letrd 11132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → (𝑓‘𝑖) ≤ sup(ran (abs ∘ 𝑓), ℝ, <
)) |
161 | 99, 106, 96, 160, 151 | lelttrd 11133 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → (𝑓‘𝑖) < 𝑗) |
162 | 85, 88, 93, 158, 161 | elicod 13129 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗) ∧ 𝑖 ∈ 𝑋) → (𝑓‘𝑖) ∈ (-𝑗[,)𝑗)) |
163 | 73, 75, 76, 77, 162 | syl31anc 1372 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖 ∈ 𝑋) → (𝑓‘𝑖) ∈ (-𝑗[,)𝑗)) |
164 | 163 | adantl3r 747 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ ¬ 𝑋 = ∅)
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖 ∈ 𝑋) → (𝑓‘𝑖) ∈ (-𝑗[,)𝑗)) |
165 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
166 | | mptexg 7097 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑋 ∈ Fin → (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉) ∈ V) |
167 | 41, 166 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉) ∈ V) |
168 | 167 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉) ∈ V) |
169 | | hoicvr.2 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝐼 = (𝑗 ∈ ℕ ↦ (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉)) |
170 | 169 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑗 ∈ ℕ ∧ (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉) ∈ V) → (𝐼‘𝑗) = (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉)) |
171 | 165, 168,
170 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑗) = (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉)) |
172 | 171 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐼‘𝑗)‘𝑖) = ((𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉)‘𝑖)) |
173 | 172 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → ((𝐼‘𝑗)‘𝑖) = ((𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉)‘𝑖)) |
174 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ 𝑋 → (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉) = (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉)) |
175 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
〈-𝑗, 𝑗〉 = 〈-𝑗, 𝑗〉 |
176 | 175 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ 𝑋 ∧ 𝑥 = 𝑖) → 〈-𝑗, 𝑗〉 = 〈-𝑗, 𝑗〉) |
177 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ 𝑋 → 𝑖 ∈ 𝑋) |
178 | | opex 5379 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
〈-𝑗, 𝑗〉 ∈ V |
179 | 178 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ 𝑋 → 〈-𝑗, 𝑗〉 ∈ V) |
180 | 174, 176,
177, 179 | fvmptd 6882 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ 𝑋 → ((𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉)‘𝑖) = 〈-𝑗, 𝑗〉) |
181 | 180 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉)‘𝑖) = 〈-𝑗, 𝑗〉) |
182 | 173, 181 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → ((𝐼‘𝑗)‘𝑖) = 〈-𝑗, 𝑗〉) |
183 | 182 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → (1st ‘((𝐼‘𝑗)‘𝑖)) = (1st ‘〈-𝑗, 𝑗〉)) |
184 | | negex 11219 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ -𝑗 ∈ V |
185 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑗 ∈ V |
186 | 184, 185 | op1st 7839 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1st ‘〈-𝑗, 𝑗〉) = -𝑗 |
187 | 186 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → (1st ‘〈-𝑗, 𝑗〉) = -𝑗) |
188 | 183, 187 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → (1st ‘((𝐼‘𝑗)‘𝑖)) = -𝑗) |
189 | 182 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → (2nd ‘((𝐼‘𝑗)‘𝑖)) = (2nd ‘〈-𝑗, 𝑗〉)) |
190 | 184, 185 | op2nd 7840 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(2nd ‘〈-𝑗, 𝑗〉) = 𝑗 |
191 | 190 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → (2nd ‘〈-𝑗, 𝑗〉) = 𝑗) |
192 | 189, 191 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → (2nd ‘((𝐼‘𝑗)‘𝑖)) = 𝑗) |
193 | 188, 192 | oveq12d 7293 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → ((1st ‘((𝐼‘𝑗)‘𝑖))[,)(2nd ‘((𝐼‘𝑗)‘𝑖))) = (-𝑗[,)𝑗)) |
194 | 193 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → (-𝑗[,)𝑗) = ((1st ‘((𝐼‘𝑗)‘𝑖))[,)(2nd ‘((𝐼‘𝑗)‘𝑖)))) |
195 | 194 | 3adant1r 1176 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋) → (-𝑗[,)𝑗) = ((1st ‘((𝐼‘𝑗)‘𝑖))[,)(2nd ‘((𝐼‘𝑗)‘𝑖)))) |
196 | 195 | ad5ant135 1367 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ ¬ 𝑋 = ∅)
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖 ∈ 𝑋) → (-𝑗[,)𝑗) = ((1st ‘((𝐼‘𝑗)‘𝑖))[,)(2nd ‘((𝐼‘𝑗)‘𝑖)))) |
197 | 164, 196 | eleqtrd 2841 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ ¬ 𝑋 = ∅)
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖 ∈ 𝑋) → (𝑓‘𝑖) ∈ ((1st ‘((𝐼‘𝑗)‘𝑖))[,)(2nd ‘((𝐼‘𝑗)‘𝑖)))) |
198 | 79, 82 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ → -𝑗 ∈
ℝ) |
199 | | opelxpi 5626 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) →
〈-𝑗, 𝑗〉 ∈ (ℝ ×
ℝ)) |
200 | 198, 94, 199 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ →
〈-𝑗, 𝑗〉 ∈ (ℝ ×
ℝ)) |
201 | 200 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ 𝑋) → 〈-𝑗, 𝑗〉 ∈ (ℝ ×
ℝ)) |
202 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉) = (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉) |
203 | 201, 202 | fmptd 6988 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉):𝑋⟶(ℝ ×
ℝ)) |
204 | 171 | feq1d 6585 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐼‘𝑗):𝑋⟶(ℝ × ℝ) ↔
(𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉):𝑋⟶(ℝ ×
ℝ))) |
205 | 203, 204 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
206 | 205 | ad4ant14 749 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
207 | 206 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ ¬ 𝑋 = ∅)
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖 ∈ 𝑋) → (𝐼‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
208 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ ¬ 𝑋 = ∅)
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖 ∈ 𝑋) → 𝑖 ∈ 𝑋) |
209 | 207, 208 | fvovco 42732 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ ¬ 𝑋 = ∅)
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖 ∈ 𝑋) → (([,) ∘ (𝐼‘𝑗))‘𝑖) = ((1st ‘((𝐼‘𝑗)‘𝑖))[,)(2nd ‘((𝐼‘𝑗)‘𝑖)))) |
210 | 209 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ ¬ 𝑋 = ∅)
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖 ∈ 𝑋) → ((1st ‘((𝐼‘𝑗)‘𝑖))[,)(2nd ‘((𝐼‘𝑗)‘𝑖))) = (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
211 | 197, 210 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ ¬ 𝑋 = ∅)
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖 ∈ 𝑋) → (𝑓‘𝑖) ∈ (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
212 | 211 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ ¬ 𝑋 = ∅)
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → ∀𝑖 ∈ 𝑋 (𝑓‘𝑖) ∈ (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
213 | 72, 212 | jca 512 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ ¬ 𝑋 = ∅)
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → (𝑓 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑓‘𝑖) ∈ (([,) ∘ (𝐼‘𝑗))‘𝑖))) |
214 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
215 | 214 | elixp 8692 |
. . . . . . . . . 10
⊢ (𝑓 ∈ X𝑖 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑓‘𝑖) ∈ (([,) ∘ (𝐼‘𝑗))‘𝑖))) |
216 | 213, 215 | sylibr 233 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑓 ∈ (ℝ
↑m 𝑋))
∧ ¬ 𝑋 = ∅)
∧ 𝑗 ∈ ℕ)
∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓 ∈ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
217 | 216 | ex 413 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) → (sup(ran (abs ∘
𝑓), ℝ, < ) <
𝑗 → 𝑓 ∈ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖))) |
218 | 217 | reximdva 3203 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → (∃𝑗 ∈ ℕ sup(ran (abs
∘ 𝑓), ℝ, < )
< 𝑗 → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑖 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖))) |
219 | 69, 218 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
220 | 22, 23, 24, 219 | syl21anc 835 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑖 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
221 | | eliun 4928 |
. . . . 5
⊢ (𝑓 ∈ ∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖) ↔ ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
222 | 220, 221 | sylibr 233 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑖 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
223 | 222 | ralrimiva 3103 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∀𝑓 ∈ (ℝ
↑m 𝑋)𝑓 ∈ ∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
224 | | dfss3 3909 |
. . 3
⊢ ((ℝ
↑m 𝑋)
⊆ ∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖) ↔ ∀𝑓 ∈ (ℝ ↑m 𝑋)𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑖 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
225 | 223, 224 | sylibr 233 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (ℝ
↑m 𝑋)
⊆ ∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) |
226 | 21, 225 | pm2.61dan 810 |
1
⊢ (𝜑 → (ℝ
↑m 𝑋)
⊆ ∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) |