Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoicvr Structured version   Visualization version   GIF version

Theorem hoicvr 44779
Description: 𝐼 is a countable set of half-open intervals that covers the whole multidimensional reals. See Definition 1135 (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
hoicvr.2 𝐼 = (𝑗 ∈ ℕ ↦ (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩))
hoicvr.3 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
hoicvr (𝜑 → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
Distinct variable groups:   𝑖,𝑋,𝑗,𝑥   𝜑,𝑖,𝑗,𝑥
Allowed substitution hints:   𝐼(𝑥,𝑖,𝑗)

Proof of Theorem hoicvr
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11142 . . . . . . 7 ℝ ∈ V
2 mapdm0 8780 . . . . . . 7 (ℝ ∈ V → (ℝ ↑m ∅) = {∅})
31, 2ax-mp 5 . . . . . 6 (ℝ ↑m ∅) = {∅}
43a1i 11 . . . . 5 (𝑋 = ∅ → (ℝ ↑m ∅) = {∅})
5 oveq2 7365 . . . . 5 (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
6 ixpeq1 8846 . . . . . . 7 (𝑋 = ∅ → X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) = X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖))
76iuneq2d 4983 . . . . . 6 (𝑋 = ∅ → 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) = 𝑗 ∈ ℕ X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖))
8 ixp0x 8864 . . . . . . . . . 10 X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖) = {∅}
98a1i 11 . . . . . . . . 9 (𝑗 ∈ ℕ → X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖) = {∅})
109iuneq2i 4975 . . . . . . . 8 𝑗 ∈ ℕ X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖) = 𝑗 ∈ ℕ {∅}
11 1nn 12164 . . . . . . . . . 10 1 ∈ ℕ
1211ne0ii 4297 . . . . . . . . 9 ℕ ≠ ∅
13 iunconst 4963 . . . . . . . . 9 (ℕ ≠ ∅ → 𝑗 ∈ ℕ {∅} = {∅})
1412, 13ax-mp 5 . . . . . . . 8 𝑗 ∈ ℕ {∅} = {∅}
1510, 14eqtri 2764 . . . . . . 7 𝑗 ∈ ℕ X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖) = {∅}
1615a1i 11 . . . . . 6 (𝑋 = ∅ → 𝑗 ∈ ℕ X𝑖 ∈ ∅ (([,) ∘ (𝐼𝑗))‘𝑖) = {∅})
177, 16eqtrd 2776 . . . . 5 (𝑋 = ∅ → 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) = {∅})
184, 5, 173eqtr4d 2786 . . . 4 (𝑋 = ∅ → (ℝ ↑m 𝑋) = 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
19 eqimss 4000 . . . 4 ((ℝ ↑m 𝑋) = 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
2018, 19syl 17 . . 3 (𝑋 = ∅ → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
2120adantl 482 . 2 ((𝜑𝑋 = ∅) → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
22 simpll 765 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝜑)
23 simpr 485 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ (ℝ ↑m 𝑋))
24 simplr 767 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → ¬ 𝑋 = ∅)
25 rncoss 5927 . . . . . . . . . . 11 ran (abs ∘ 𝑓) ⊆ ran abs
26 absf 15222 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
27 frn 6675 . . . . . . . . . . . 12 (abs:ℂ⟶ℝ → ran abs ⊆ ℝ)
2826, 27ax-mp 5 . . . . . . . . . . 11 ran abs ⊆ ℝ
2925, 28sstri 3953 . . . . . . . . . 10 ran (abs ∘ 𝑓) ⊆ ℝ
3029a1i 11 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ran (abs ∘ 𝑓) ⊆ ℝ)
31 ltso 11235 . . . . . . . . . . 11 < Or ℝ
3231a1i 11 . . . . . . . . . 10 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → < Or ℝ)
3326a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → abs:ℂ⟶ℝ)
34 elmapi 8787 . . . . . . . . . . . . . . 15 (𝑓 ∈ (ℝ ↑m 𝑋) → 𝑓:𝑋⟶ℝ)
3534adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓:𝑋⟶ℝ)
36 ax-resscn 11108 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
3736a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → ℝ ⊆ ℂ)
3835, 37fssd 6686 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓:𝑋⟶ℂ)
39 fco 6692 . . . . . . . . . . . . 13 ((abs:ℂ⟶ℝ ∧ 𝑓:𝑋⟶ℂ) → (abs ∘ 𝑓):𝑋⟶ℝ)
4033, 38, 39syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → (abs ∘ 𝑓):𝑋⟶ℝ)
41 hoicvr.3 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ Fin)
4241adantr 481 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑋 ∈ Fin)
43 rnffi 43382 . . . . . . . . . . . 12 (((abs ∘ 𝑓):𝑋⟶ℝ ∧ 𝑋 ∈ Fin) → ran (abs ∘ 𝑓) ∈ Fin)
4440, 42, 43syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → ran (abs ∘ 𝑓) ∈ Fin)
4544adantr 481 . . . . . . . . . 10 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ran (abs ∘ 𝑓) ∈ Fin)
4634frnd 6676 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℝ ↑m 𝑋) → ran 𝑓 ⊆ ℝ)
4726fdmi 6680 . . . . . . . . . . . . . . . . . . . . . 22 dom abs = ℂ
4847eqcomi 2745 . . . . . . . . . . . . . . . . . . . . 21 ℂ = dom abs
4936, 48sseqtri 3980 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ dom abs
5049a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℝ ↑m 𝑋) → ℝ ⊆ dom abs)
5146, 50sstrd 3954 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ (ℝ ↑m 𝑋) → ran 𝑓 ⊆ dom abs)
52 dmcosseq 5928 . . . . . . . . . . . . . . . . . 18 (ran 𝑓 ⊆ dom abs → dom (abs ∘ 𝑓) = dom 𝑓)
5351, 52syl 17 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (ℝ ↑m 𝑋) → dom (abs ∘ 𝑓) = dom 𝑓)
5434fdmd 6679 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (ℝ ↑m 𝑋) → dom 𝑓 = 𝑋)
5553, 54eqtrd 2776 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (ℝ ↑m 𝑋) → dom (abs ∘ 𝑓) = 𝑋)
5655adantr 481 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ ¬ 𝑋 = ∅) → dom (abs ∘ 𝑓) = 𝑋)
57 neqne 2951 . . . . . . . . . . . . . . . 16 𝑋 = ∅ → 𝑋 ≠ ∅)
5857adantl 482 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
5956, 58eqnetrd 3011 . . . . . . . . . . . . . 14 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ ¬ 𝑋 = ∅) → dom (abs ∘ 𝑓) ≠ ∅)
6059neneqd 2948 . . . . . . . . . . . . 13 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ ¬ 𝑋 = ∅) → ¬ dom (abs ∘ 𝑓) = ∅)
61 dm0rn0 5880 . . . . . . . . . . . . 13 (dom (abs ∘ 𝑓) = ∅ ↔ ran (abs ∘ 𝑓) = ∅)
6260, 61sylnib 327 . . . . . . . . . . . 12 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ ¬ 𝑋 = ∅) → ¬ ran (abs ∘ 𝑓) = ∅)
6362neqned 2950 . . . . . . . . . . 11 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ ¬ 𝑋 = ∅) → ran (abs ∘ 𝑓) ≠ ∅)
6463adantll 712 . . . . . . . . . 10 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ran (abs ∘ 𝑓) ≠ ∅)
65 fisupcl 9405 . . . . . . . . . 10 (( < Or ℝ ∧ (ran (abs ∘ 𝑓) ∈ Fin ∧ ran (abs ∘ 𝑓) ≠ ∅ ∧ ran (abs ∘ 𝑓) ⊆ ℝ)) → sup(ran (abs ∘ 𝑓), ℝ, < ) ∈ ran (abs ∘ 𝑓))
6632, 45, 64, 30, 65syl13anc 1372 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → sup(ran (abs ∘ 𝑓), ℝ, < ) ∈ ran (abs ∘ 𝑓))
6730, 66sseldd 3945 . . . . . . . 8 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → sup(ran (abs ∘ 𝑓), ℝ, < ) ∈ ℝ)
68 arch 12410 . . . . . . . 8 (sup(ran (abs ∘ 𝑓), ℝ, < ) ∈ ℝ → ∃𝑗 ∈ ℕ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗)
6967, 68syl 17 . . . . . . 7 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ∃𝑗 ∈ ℕ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗)
7035ffnd 6669 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 Fn 𝑋)
7170ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓 Fn 𝑋)
7271adantlr 713 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓 Fn 𝑋)
73 simplll 773 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝜑𝑓 ∈ (ℝ ↑m 𝑋)))
74 id 22 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
7574ad3antlr 729 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → 𝑗 ∈ ℕ)
76 simplr 767 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗)
77 simpr 485 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → 𝑖𝑋)
78 simp2 1137 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑗 ∈ ℕ)
79 zssre 12506 . . . . . . . . . . . . . . . . . . . . 21 ℤ ⊆ ℝ
80 ressxr 11199 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℝ*
8179, 80sstri 3953 . . . . . . . . . . . . . . . . . . . 20 ℤ ⊆ ℝ*
82 nnnegz 12502 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → -𝑗 ∈ ℤ)
8381, 82sselid 3942 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → -𝑗 ∈ ℝ*)
8483adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ 𝑖𝑋) → -𝑗 ∈ ℝ*)
8578, 84sylan 580 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -𝑗 ∈ ℝ*)
8674nnxrd 43497 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ*)
8786adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ 𝑖𝑋) → 𝑗 ∈ ℝ*)
8878, 87sylan 580 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → 𝑗 ∈ ℝ*)
89343ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓:𝑋⟶ℝ)
9080a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → ℝ ⊆ ℝ*)
9189, 90fssd 6686 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓:𝑋⟶ℝ*)
92913adant1l 1176 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓:𝑋⟶ℝ*)
9392ffvelcdmda 7035 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ*)
94 nnre 12160 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
9594adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑖𝑋) → 𝑗 ∈ ℝ)
96953ad2antl2 1186 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → 𝑗 ∈ ℝ)
9796renegcld 11582 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -𝑗 ∈ ℝ)
9835ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
99983ad2antl1 1185 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
10099renegcld 11582 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -(𝑓𝑖) ∈ ℝ)
101 simpll 765 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝜑)
102 simplr 767 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝑓 ∈ (ℝ ↑m 𝑋))
103 n0i 4293 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖𝑋 → ¬ 𝑋 = ∅)
104103adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ¬ 𝑋 = ∅)
105101, 102, 104, 67syl21anc 836 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → sup(ran (abs ∘ 𝑓), ℝ, < ) ∈ ℝ)
1061053ad2antl1 1185 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → sup(ran (abs ∘ 𝑓), ℝ, < ) ∈ ℝ)
10734ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
10836, 107sselid 3942 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℂ)
109108abscld 15321 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ∈ ℝ)
110109adantll 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ∈ ℝ)
1111103ad2antl1 1185 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ∈ ℝ)
112107renegcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → -(𝑓𝑖) ∈ ℝ)
113112leabsd 15299 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → -(𝑓𝑖) ≤ (abs‘-(𝑓𝑖)))
114108absnegd 15334 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (abs‘-(𝑓𝑖)) = (abs‘(𝑓𝑖)))
115113, 114breqtrd 5131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → -(𝑓𝑖) ≤ (abs‘(𝑓𝑖)))
116115adantll 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → -(𝑓𝑖) ≤ (abs‘(𝑓𝑖)))
1171163ad2antl1 1185 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -(𝑓𝑖) ≤ (abs‘(𝑓𝑖)))
11829a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → ran (abs ∘ 𝑓) ⊆ ℝ)
119104, 64syldan 591 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ran (abs ∘ 𝑓) ≠ ∅)
1201193ad2antl1 1185 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → ran (abs ∘ 𝑓) ≠ ∅)
121 fimaxre2 12100 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ran (abs ∘ 𝑓) ⊆ ℝ ∧ ran (abs ∘ 𝑓) ∈ Fin) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧𝑦)
12229, 44, 121sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧𝑦)
123122adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧𝑦)
1241233ad2antl1 1185 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧𝑦)
125 elmapfun 8804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 ∈ (ℝ ↑m 𝑋) → Fun 𝑓)
126125adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → Fun 𝑓)
127 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → 𝑖𝑋)
12854eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓 ∈ (ℝ ↑m 𝑋) → 𝑋 = dom 𝑓)
129128adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → 𝑋 = dom 𝑓)
130127, 129eleqtrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → 𝑖 ∈ dom 𝑓)
131 fvco 6939 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun 𝑓𝑖 ∈ dom 𝑓) → ((abs ∘ 𝑓)‘𝑖) = (abs‘(𝑓𝑖)))
132126, 130, 131syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → ((abs ∘ 𝑓)‘𝑖) = (abs‘(𝑓𝑖)))
133132eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) = ((abs ∘ 𝑓)‘𝑖))
134 absfun 43574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Fun abs
135134a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 ∈ (ℝ ↑m 𝑋) → Fun abs)
136 funco 6541 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Fun abs ∧ Fun 𝑓) → Fun (abs ∘ 𝑓))
137135, 125, 136syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 ∈ (ℝ ↑m 𝑋) → Fun (abs ∘ 𝑓))
138137adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → Fun (abs ∘ 𝑓))
139108, 48eleqtrdi 2848 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ dom abs)
140 dmfco 6937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Fun 𝑓𝑖 ∈ dom 𝑓) → (𝑖 ∈ dom (abs ∘ 𝑓) ↔ (𝑓𝑖) ∈ dom abs))
141126, 130, 140syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (𝑖 ∈ dom (abs ∘ 𝑓) ↔ (𝑓𝑖) ∈ dom abs))
142139, 141mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → 𝑖 ∈ dom (abs ∘ 𝑓))
143 fvelrn 7027 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun (abs ∘ 𝑓) ∧ 𝑖 ∈ dom (abs ∘ 𝑓)) → ((abs ∘ 𝑓)‘𝑖) ∈ ran (abs ∘ 𝑓))
144138, 142, 143syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → ((abs ∘ 𝑓)‘𝑖) ∈ ran (abs ∘ 𝑓))
145133, 144eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ∈ ran (abs ∘ 𝑓))
146145adantll 712 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ∈ ran (abs ∘ 𝑓))
1471463ad2antl1 1185 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ∈ ran (abs ∘ 𝑓))
148 suprub 12116 . . . . . . . . . . . . . . . . . . . . . . 23 (((ran (abs ∘ 𝑓) ⊆ ℝ ∧ ran (abs ∘ 𝑓) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (abs ∘ 𝑓)𝑧𝑦) ∧ (abs‘(𝑓𝑖)) ∈ ran (abs ∘ 𝑓)) → (abs‘(𝑓𝑖)) ≤ sup(ran (abs ∘ 𝑓), ℝ, < ))
149118, 120, 124, 147, 148syl31anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (abs‘(𝑓𝑖)) ≤ sup(ran (abs ∘ 𝑓), ℝ, < ))
150100, 111, 106, 117, 149letrd 11312 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -(𝑓𝑖) ≤ sup(ran (abs ∘ 𝑓), ℝ, < ))
151 simpl3 1193 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗)
152100, 106, 96, 150, 151lelttrd 11313 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -(𝑓𝑖) < 𝑗)
153100, 96ltnegd 11733 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (-(𝑓𝑖) < 𝑗 ↔ -𝑗 < --(𝑓𝑖)))
154152, 153mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -𝑗 < --(𝑓𝑖))
15536, 99sselid 3942 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℂ)
156155negnegd 11503 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → --(𝑓𝑖) = (𝑓𝑖))
157154, 156breqtrd 5131 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -𝑗 < (𝑓𝑖))
15897, 99, 157ltled 11303 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → -𝑗 ≤ (𝑓𝑖))
15999leabsd 15299 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ≤ (abs‘(𝑓𝑖)))
16099, 111, 106, 159, 149letrd 11312 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ≤ sup(ran (abs ∘ 𝑓), ℝ, < ))
16199, 106, 96, 160, 151lelttrd 11313 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) < 𝑗)
16285, 88, 93, 158, 161elicod 13314 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-𝑗[,)𝑗))
16373, 75, 76, 77, 162syl31anc 1373 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-𝑗[,)𝑗))
164163adantl3r 748 . . . . . . . . . . . . . 14 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-𝑗[,)𝑗))
165 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
166 mptexg 7171 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋 ∈ Fin → (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V)
16741, 166syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V)
168167adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V)
169 hoicvr.2 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐼 = (𝑗 ∈ ℕ ↦ (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩))
170169fvmpt2 6959 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℕ ∧ (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V) → (𝐼𝑗) = (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩))
171165, 168, 170syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) = (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩))
172171fveq1d 6844 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ) → ((𝐼𝑗)‘𝑖) = ((𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑖))
1731723adant3 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → ((𝐼𝑗)‘𝑖) = ((𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑖))
174 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖𝑋 → (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩) = (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩))
175 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 ⟨-𝑗, 𝑗⟩ = ⟨-𝑗, 𝑗
176175a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖𝑋𝑥 = 𝑖) → ⟨-𝑗, 𝑗⟩ = ⟨-𝑗, 𝑗⟩)
177 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖𝑋𝑖𝑋)
178 opex 5421 . . . . . . . . . . . . . . . . . . . . . . . 24 ⟨-𝑗, 𝑗⟩ ∈ V
179178a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖𝑋 → ⟨-𝑗, 𝑗⟩ ∈ V)
180174, 176, 177, 179fvmptd 6955 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖𝑋 → ((𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑖) = ⟨-𝑗, 𝑗⟩)
1811803ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → ((𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑖) = ⟨-𝑗, 𝑗⟩)
182173, 181eqtrd 2776 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → ((𝐼𝑗)‘𝑖) = ⟨-𝑗, 𝑗⟩)
183182fveq2d 6846 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (1st ‘((𝐼𝑗)‘𝑖)) = (1st ‘⟨-𝑗, 𝑗⟩))
184 negex 11399 . . . . . . . . . . . . . . . . . . . . 21 -𝑗 ∈ V
185 vex 3449 . . . . . . . . . . . . . . . . . . . . 21 𝑗 ∈ V
186184, 185op1st 7929 . . . . . . . . . . . . . . . . . . . 20 (1st ‘⟨-𝑗, 𝑗⟩) = -𝑗
187186a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (1st ‘⟨-𝑗, 𝑗⟩) = -𝑗)
188183, 187eqtrd 2776 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (1st ‘((𝐼𝑗)‘𝑖)) = -𝑗)
189182fveq2d 6846 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (2nd ‘((𝐼𝑗)‘𝑖)) = (2nd ‘⟨-𝑗, 𝑗⟩))
190184, 185op2nd 7930 . . . . . . . . . . . . . . . . . . . 20 (2nd ‘⟨-𝑗, 𝑗⟩) = 𝑗
191190a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (2nd ‘⟨-𝑗, 𝑗⟩) = 𝑗)
192189, 191eqtrd 2776 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (2nd ‘((𝐼𝑗)‘𝑖)) = 𝑗)
193188, 192oveq12d 7375 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))) = (-𝑗[,)𝑗))
194193eqcomd 2742 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ ∧ 𝑖𝑋) → (-𝑗[,)𝑗) = ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))))
1951943adant1r 1177 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ 𝑗 ∈ ℕ ∧ 𝑖𝑋) → (-𝑗[,)𝑗) = ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))))
196195ad5ant135 1368 . . . . . . . . . . . . . 14 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (-𝑗[,)𝑗) = ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))))
197164, 196eleqtrd 2840 . . . . . . . . . . . . 13 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))))
19879, 82sselid 3942 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → -𝑗 ∈ ℝ)
199 opelxpi 5670 . . . . . . . . . . . . . . . . . . . . 21 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
200198, 94, 199syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
201200ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥𝑋) → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
202 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩) = (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩)
203201, 202fmptd 7062 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ))
204171feq1d 6653 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → ((𝐼𝑗):𝑋⟶(ℝ × ℝ) ↔ (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
205203, 204mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
206205ad4ant14 750 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
207206ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
208 simpr 485 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → 𝑖𝑋)
209207, 208fvovco 43403 . . . . . . . . . . . . . 14 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (([,) ∘ (𝐼𝑗))‘𝑖) = ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))))
210209eqcomd 2742 . . . . . . . . . . . . 13 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → ((1st ‘((𝐼𝑗)‘𝑖))[,)(2nd ‘((𝐼𝑗)‘𝑖))) = (([,) ∘ (𝐼𝑗))‘𝑖))
211197, 210eleqtrd 2840 . . . . . . . . . . . 12 ((((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (([,) ∘ (𝐼𝑗))‘𝑖))
212211ralrimiva 3143 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → ∀𝑖𝑋 (𝑓𝑖) ∈ (([,) ∘ (𝐼𝑗))‘𝑖))
21372, 212jca 512 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ (([,) ∘ (𝐼𝑗))‘𝑖)))
214 vex 3449 . . . . . . . . . . 11 𝑓 ∈ V
215214elixp 8842 . . . . . . . . . 10 (𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ (([,) ∘ (𝐼𝑗))‘𝑖)))
216213, 215sylibr 233 . . . . . . . . 9 (((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) ∧ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗) → 𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
217216ex 413 . . . . . . . 8 ((((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ ℕ) → (sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖)))
218217reximdva 3165 . . . . . . 7 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → (∃𝑗 ∈ ℕ sup(ran (abs ∘ 𝑓), ℝ, < ) < 𝑗 → ∃𝑗 ∈ ℕ 𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖)))
21969, 218mpd 15 . . . . . 6 (((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) ∧ ¬ 𝑋 = ∅) → ∃𝑗 ∈ ℕ 𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
22022, 23, 24, 219syl21anc 836 . . . . 5 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → ∃𝑗 ∈ ℕ 𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
221 eliun 4958 . . . . 5 (𝑓 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) ↔ ∃𝑗 ∈ ℕ 𝑓X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
222220, 221sylibr 233 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
223222ralrimiva 3143 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∀𝑓 ∈ (ℝ ↑m 𝑋)𝑓 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
224 dfss3 3932 . . 3 ((ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖) ↔ ∀𝑓 ∈ (ℝ ↑m 𝑋)𝑓 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
225223, 224sylibr 233 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
22621, 225pm2.61dan 811 1 (𝜑 → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  wss 3910  c0 4282  {csn 4586  cop 4592   ciun 4954   class class class wbr 5105  cmpt 5188   Or wor 5544   × cxp 5631  dom cdm 5633  ran crn 5634  ccom 5637  Fun wfun 6490   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  m cmap 8765  Xcixp 8835  Fincfn 8883  supcsup 9376  cc 11049  cr 11050  1c1 11052  *cxr 11188   < clt 11189  cle 11190  -cneg 11386  cn 12153  cz 12499  [,)cico 13266  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by:  hoicvrrex  44787
  Copyright terms: Public domain W3C validator