MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunidOLD Structured version   Visualization version   GIF version

Theorem iunidOLD 5060
Description: Obsolete version of iunid 5059 as of 15-Jan-2025. (Contributed by NM, 6-Sep-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
iunidOLD 𝑥𝐴 {𝑥} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunidOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-sn 4626 . . . . 5 {𝑥} = {𝑦𝑦 = 𝑥}
2 equcom 2016 . . . . . 6 (𝑦 = 𝑥𝑥 = 𝑦)
32abbii 2808 . . . . 5 {𝑦𝑦 = 𝑥} = {𝑦𝑥 = 𝑦}
41, 3eqtri 2764 . . . 4 {𝑥} = {𝑦𝑥 = 𝑦}
54a1i 11 . . 3 (𝑥𝐴 → {𝑥} = {𝑦𝑥 = 𝑦})
65iuneq2i 5012 . 2 𝑥𝐴 {𝑥} = 𝑥𝐴 {𝑦𝑥 = 𝑦}
7 iunab 5050 . . 3 𝑥𝐴 {𝑦𝑥 = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 𝑥 = 𝑦}
8 risset 3232 . . . 4 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑦)
98abbii 2808 . . 3 {𝑦𝑦𝐴} = {𝑦 ∣ ∃𝑥𝐴 𝑥 = 𝑦}
10 abid2 2878 . . 3 {𝑦𝑦𝐴} = 𝐴
117, 9, 103eqtr2i 2770 . 2 𝑥𝐴 {𝑦𝑥 = 𝑦} = 𝐴
126, 11eqtri 2764 1 𝑥𝐴 {𝑥} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  {cab 2713  wrex 3069  {csn 4625   ciun 4990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-v 3481  df-ss 3967  df-sn 4626  df-iun 4992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator