| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunidOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of iunid 5059 as of 15-Jan-2025. (Contributed by NM, 6-Sep-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| iunidOLD | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sn 4626 | . . . . 5 ⊢ {𝑥} = {𝑦 ∣ 𝑦 = 𝑥} | |
| 2 | equcom 2016 | . . . . . 6 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 3 | 2 | abbii 2808 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = 𝑥} = {𝑦 ∣ 𝑥 = 𝑦} |
| 4 | 1, 3 | eqtri 2764 | . . . 4 ⊢ {𝑥} = {𝑦 ∣ 𝑥 = 𝑦} |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑥} = {𝑦 ∣ 𝑥 = 𝑦}) |
| 6 | 5 | iuneq2i 5012 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} |
| 7 | iunab 5050 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦} | |
| 8 | risset 3232 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦) | |
| 9 | 8 | abbii 2808 | . . 3 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦} |
| 10 | abid2 2878 | . . 3 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
| 11 | 7, 9, 10 | 3eqtr2i 2770 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} = 𝐴 |
| 12 | 6, 11 | eqtri 2764 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 {cab 2713 ∃wrex 3069 {csn 4625 ∪ ciun 4990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-v 3481 df-ss 3967 df-sn 4626 df-iun 4992 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |