| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunidOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of iunid 5041 as of 15-Jan-2025. (Contributed by NM, 6-Sep-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| iunidOLD | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sn 4607 | . . . . 5 ⊢ {𝑥} = {𝑦 ∣ 𝑦 = 𝑥} | |
| 2 | equcom 2018 | . . . . . 6 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 3 | 2 | abbii 2803 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = 𝑥} = {𝑦 ∣ 𝑥 = 𝑦} |
| 4 | 1, 3 | eqtri 2759 | . . . 4 ⊢ {𝑥} = {𝑦 ∣ 𝑥 = 𝑦} |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑥} = {𝑦 ∣ 𝑥 = 𝑦}) |
| 6 | 5 | iuneq2i 4994 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} |
| 7 | iunab 5032 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦} | |
| 8 | risset 3221 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦) | |
| 9 | 8 | abbii 2803 | . . 3 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦} |
| 10 | abid2 2873 | . . 3 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
| 11 | 7, 9, 10 | 3eqtr2i 2765 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} = 𝐴 |
| 12 | 6, 11 | eqtri 2759 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 {csn 4606 ∪ ciun 4972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-v 3466 df-ss 3948 df-sn 4607 df-iun 4974 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |