MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunidOLD Structured version   Visualization version   GIF version

Theorem iunidOLD 5065
Description: Obsolete version of iunid 5064 as of 15-Jan-2025. (Contributed by NM, 6-Sep-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
iunidOLD 𝑥𝐴 {𝑥} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunidOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-sn 4630 . . . . 5 {𝑥} = {𝑦𝑦 = 𝑥}
2 equcom 2022 . . . . . 6 (𝑦 = 𝑥𝑥 = 𝑦)
32abbii 2803 . . . . 5 {𝑦𝑦 = 𝑥} = {𝑦𝑥 = 𝑦}
41, 3eqtri 2761 . . . 4 {𝑥} = {𝑦𝑥 = 𝑦}
54a1i 11 . . 3 (𝑥𝐴 → {𝑥} = {𝑦𝑥 = 𝑦})
65iuneq2i 5019 . 2 𝑥𝐴 {𝑥} = 𝑥𝐴 {𝑦𝑥 = 𝑦}
7 iunab 5055 . . 3 𝑥𝐴 {𝑦𝑥 = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 𝑥 = 𝑦}
8 risset 3231 . . . 4 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑦)
98abbii 2803 . . 3 {𝑦𝑦𝐴} = {𝑦 ∣ ∃𝑥𝐴 𝑥 = 𝑦}
10 abid2 2872 . . 3 {𝑦𝑦𝐴} = 𝐴
117, 9, 103eqtr2i 2767 . 2 𝑥𝐴 {𝑦𝑥 = 𝑦} = 𝐴
126, 11eqtri 2761 1 𝑥𝐴 {𝑥} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  {cab 2710  wrex 3071  {csn 4629   ciun 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-v 3477  df-in 3956  df-ss 3966  df-sn 4630  df-iun 5000
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator