MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq1d Structured version   Visualization version   GIF version

Theorem ixpeq1d 8885
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ixpeq1d (𝜑X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem ixpeq1d
StepHypRef Expression
1 ixpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ixpeq1 8884 . 2 (𝐴 = 𝐵X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
31, 2syl 17 1 (𝜑X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Xcixp 8873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-fn 6517  df-ixp 8874
This theorem is referenced by:  elixpsn  8913  ixpsnf1o  8914  dfac9  10097  prdsval  17425  isfunc  17833  funcpropd  17871  natfval  17918  natpropd  17948  dprdval  19942  ptval  23464  dfac14  23512  ptuncnv  23701  ptunhmeo  23702  hoidmvle  46605  hoimbl  46636
  Copyright terms: Public domain W3C validator