| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ixpeq1d | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ixpeq1 8840 | . 2 ⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Xcixp 8829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-fn 6491 df-ixp 8830 |
| This theorem is referenced by: elixpsn 8869 ixpsnf1o 8870 dfac9 10037 prdsval 17363 isfunc 17775 funcpropd 17813 natfval 17860 natpropd 17890 dprdval 19921 ptval 23488 dfac14 23536 ptuncnv 23725 ptunhmeo 23726 hoidmvle 46725 hoimbl 46756 |
| Copyright terms: Public domain | W3C validator |