MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq1d Structured version   Visualization version   GIF version

Theorem ixpeq1d 8882
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ixpeq1d (𝜑X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem ixpeq1d
StepHypRef Expression
1 ixpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ixpeq1 8881 . 2 (𝐴 = 𝐵X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
31, 2syl 17 1 (𝜑X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Xcixp 8870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-fn 6514  df-ixp 8871
This theorem is referenced by:  elixpsn  8910  ixpsnf1o  8911  dfac9  10090  prdsval  17418  isfunc  17826  funcpropd  17864  natfval  17911  natpropd  17941  dprdval  19935  ptval  23457  dfac14  23505  ptuncnv  23694  ptunhmeo  23695  hoidmvle  46598  hoimbl  46629
  Copyright terms: Public domain W3C validator