MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq1d Structured version   Visualization version   GIF version

Theorem ixpeq1d 8655
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ixpeq1d (𝜑X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem ixpeq1d
StepHypRef Expression
1 ixpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ixpeq1 8654 . 2 (𝐴 = 𝐵X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
31, 2syl 17 1 (𝜑X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Xcixp 8643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-fn 6421  df-ixp 8644
This theorem is referenced by:  elixpsn  8683  ixpsnf1o  8684  dfac9  9823  prdsval  17083  isfunc  17495  funcpropd  17532  natfval  17578  natpropd  17610  dprdval  19521  ptval  22629  dfac14  22677  ptuncnv  22866  ptunhmeo  22867  hoidmvle  44028  hoimbl  44059
  Copyright terms: Public domain W3C validator