MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsval Structured version   Visualization version   GIF version

Theorem prdsval 17418
Description: Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsval.p 𝑃 = (𝑆Xs𝑅)
prdsval.k 𝐾 = (Base‘𝑆)
prdsval.i (𝜑 → dom 𝑅 = 𝐼)
prdsval.b (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
prdsval.a (𝜑+ = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
prdsval.t (𝜑× = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
prdsval.m (𝜑· = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
prdsval.j (𝜑, = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
prdsval.o (𝜑𝑂 = (∏t‘(TopOpen ∘ 𝑅)))
prdsval.l (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
prdsval.d (𝜑𝐷 = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
prdsval.h (𝜑𝐻 = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
prdsval.x (𝜑 = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)𝐻𝑐), 𝑒 ∈ (𝐻𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
prdsval.s (𝜑𝑆𝑊)
prdsval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
prdsval (𝜑𝑃 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
Distinct variable groups:   𝑎,𝑐,𝑑,𝑒,𝑓,𝑔,𝐵   𝐻,𝑎,𝑐,𝑑,𝑒   𝑥,𝑎,𝜑,𝑐,𝑑,𝑒,𝑓,𝑔   𝑥,𝐼   𝑅,𝑎,𝑐,𝑑,𝑒,𝑓,𝑔,𝑥   𝑆,𝑎,𝑐,𝑑,𝑒,𝑓,𝑔,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝑃(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   + (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   · (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   × (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝐻(𝑥,𝑓,𝑔)   , (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝐼(𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝐾(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝑂(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝑊(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝑍(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)

Proof of Theorem prdsval
Dummy variables 𝑟 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsval.p . 2 𝑃 = (𝑆Xs𝑅)
2 df-prds 17410 . . . 4 Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
32a1i 11 . . 3 (𝜑Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))))
4 vex 3451 . . . . . . . . . . . 12 𝑟 ∈ V
54rnex 7886 . . . . . . . . . . 11 ran 𝑟 ∈ V
65uniex 7717 . . . . . . . . . 10 ran 𝑟 ∈ V
76rnex 7886 . . . . . . . . 9 ran ran 𝑟 ∈ V
87uniex 7717 . . . . . . . 8 ran ran 𝑟 ∈ V
9 baseid 17182 . . . . . . . . . . . 12 Base = Slot (Base‘ndx)
109strfvss 17157 . . . . . . . . . . 11 (Base‘(𝑟𝑥)) ⊆ ran (𝑟𝑥)
11 fvssunirn 6891 . . . . . . . . . . . 12 (𝑟𝑥) ⊆ ran 𝑟
12 rnss 5903 . . . . . . . . . . . 12 ((𝑟𝑥) ⊆ ran 𝑟 → ran (𝑟𝑥) ⊆ ran ran 𝑟)
13 uniss 4879 . . . . . . . . . . . 12 (ran (𝑟𝑥) ⊆ ran ran 𝑟 ran (𝑟𝑥) ⊆ ran ran 𝑟)
1411, 12, 13mp2b 10 . . . . . . . . . . 11 ran (𝑟𝑥) ⊆ ran ran 𝑟
1510, 14sstri 3956 . . . . . . . . . 10 (Base‘(𝑟𝑥)) ⊆ ran ran 𝑟
1615rgenw 3048 . . . . . . . . 9 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ran ran 𝑟
17 iunss 5009 . . . . . . . . 9 ( 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ran ran 𝑟 ↔ ∀𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ran ran 𝑟)
1816, 17mpbir 231 . . . . . . . 8 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ran ran 𝑟
198, 18ssexi 5277 . . . . . . 7 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∈ V
20 ixpssmap2g 8900 . . . . . . 7 ( 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∈ V → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ( 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ↑m dom 𝑟))
2119, 20ax-mp 5 . . . . . 6 X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ( 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ↑m dom 𝑟)
22 ovex 7420 . . . . . . 7 ( 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ↑m dom 𝑟) ∈ V
2322ssex 5276 . . . . . 6 (X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ( 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ↑m dom 𝑟) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∈ V)
2421, 23mp1i 13 . . . . 5 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∈ V)
25 simpr 484 . . . . . . . . 9 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅)
2625fveq1d 6860 . . . . . . . 8 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑟𝑥) = (𝑅𝑥))
2726fveq2d 6862 . . . . . . 7 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (Base‘(𝑟𝑥)) = (Base‘(𝑅𝑥)))
2827ixpeq2dv 8886 . . . . . 6 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥𝐼 (Base‘(𝑟𝑥)) = X𝑥𝐼 (Base‘(𝑅𝑥)))
2925dmeqd 5869 . . . . . . . 8 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑅)
30 prdsval.i . . . . . . . . 9 (𝜑 → dom 𝑅 = 𝐼)
3130ad2antrr 726 . . . . . . . 8 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑅 = 𝐼)
3229, 31eqtrd 2764 . . . . . . 7 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑟 = 𝐼)
3332ixpeq1d 8882 . . . . . 6 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) = X𝑥𝐼 (Base‘(𝑟𝑥)))
34 prdsval.b . . . . . . 7 (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
3534ad2antrr 726 . . . . . 6 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → 𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
3628, 33, 353eqtr4d 2774 . . . . 5 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) = 𝐵)
37 prdsvallem 17417 . . . . . . 7 (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
3837a1i 11 . . . . . 6 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V)
39 simpr 484 . . . . . . . 8 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝑣 = 𝐵)
4032adantr 480 . . . . . . . . . 10 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → dom 𝑟 = 𝐼)
4140ixpeq1d 8882 . . . . . . . . 9 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)))
4226fveq2d 6862 . . . . . . . . . . . 12 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (Hom ‘(𝑟𝑥)) = (Hom ‘(𝑅𝑥)))
4342oveqd 7404 . . . . . . . . . . 11 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))
4443ixpeq2dv 8886 . . . . . . . . . 10 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))
4544adantr 480 . . . . . . . . 9 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))
4641, 45eqtrd 2764 . . . . . . . 8 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))
4739, 39, 46mpoeq123dv 7464 . . . . . . 7 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
48 prdsval.h . . . . . . . 8 (𝜑𝐻 = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
4948ad3antrrr 730 . . . . . . 7 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝐻 = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
5047, 49eqtr4d 2767 . . . . . 6 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) = 𝐻)
51 simplr 768 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → 𝑣 = 𝐵)
5251opeq2d 4844 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(Base‘ndx), 𝑣⟩ = ⟨(Base‘ndx), 𝐵⟩)
5326fveq2d 6862 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (+g‘(𝑟𝑥)) = (+g‘(𝑅𝑥)))
5453oveqd 7404 . . . . . . . . . . . . . . 15 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))
5532, 54mpteq12dv 5194 . . . . . . . . . . . . . 14 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))
5655adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))
5739, 39, 56mpoeq123dv 7464 . . . . . . . . . . . 12 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
5857adantr 480 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
59 prdsval.a . . . . . . . . . . . 12 (𝜑+ = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
6059ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
6158, 60eqtr4d 2767 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥)))) = + )
6261opeq2d 4844 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩ = ⟨(+g‘ndx), + ⟩)
6326fveq2d 6862 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (.r‘(𝑟𝑥)) = (.r‘(𝑅𝑥)))
6463oveqd 7404 . . . . . . . . . . . . . . 15 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))
6532, 64mpteq12dv 5194 . . . . . . . . . . . . . 14 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))
6665adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))
6739, 39, 66mpoeq123dv 7464 . . . . . . . . . . . 12 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
6867adantr 480 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
69 prdsval.t . . . . . . . . . . . 12 (𝜑× = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
7069ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → × = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
7168, 70eqtr4d 2767 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥)))) = × )
7271opeq2d 4844 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩ = ⟨(.r‘ndx), × ⟩)
7352, 62, 72tpeq123d 4712 . . . . . . . 8 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → {⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩})
74 simp-4r 783 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → 𝑠 = 𝑆)
7574opeq2d 4844 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(Scalar‘ndx), 𝑠⟩ = ⟨(Scalar‘ndx), 𝑆⟩)
76 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝑠 = 𝑆)
7776fveq2d 6862 . . . . . . . . . . . . . 14 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (Base‘𝑠) = (Base‘𝑆))
78 prdsval.k . . . . . . . . . . . . . 14 𝐾 = (Base‘𝑆)
7977, 78eqtr4di 2782 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (Base‘𝑠) = 𝐾)
8026fveq2d 6862 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ( ·𝑠 ‘(𝑟𝑥)) = ( ·𝑠 ‘(𝑅𝑥)))
8180oveqd 7404 . . . . . . . . . . . . . . 15 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥)) = (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))
8232, 81mpteq12dv 5194 . . . . . . . . . . . . . 14 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))
8382adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))
8479, 39, 83mpoeq123dv 7464 . . . . . . . . . . . 12 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
8584adantr 480 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
86 prdsval.m . . . . . . . . . . . 12 (𝜑· = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
8786ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → · = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
8885, 87eqtr4d 2767 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥)))) = · )
8988opeq2d 4844 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩ = ⟨( ·𝑠 ‘ndx), · ⟩)
9026fveq2d 6862 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (·𝑖‘(𝑟𝑥)) = (·𝑖‘(𝑅𝑥)))
9190oveqd 7404 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))
9232, 91mpteq12dv 5194 . . . . . . . . . . . . . . 15 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))
9392adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))
9476, 93oveq12d 7405 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))) = (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))
9539, 39, 94mpoeq123dv 7464 . . . . . . . . . . . 12 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
9695adantr 480 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
97 prdsval.j . . . . . . . . . . . 12 (𝜑, = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
9897ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → , = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
9996, 98eqtr4d 2767 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥))))) = , )
10099opeq2d 4844 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩ = ⟨(·𝑖‘ndx), , ⟩)
10175, 89, 100tpeq123d 4712 . . . . . . . 8 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩} = {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩})
10273, 101uneq12d 4132 . . . . . . 7 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}))
103 simpllr 775 . . . . . . . . . . . . 13 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → 𝑟 = 𝑅)
104103coeq2d 5826 . . . . . . . . . . . 12 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (TopOpen ∘ 𝑟) = (TopOpen ∘ 𝑅))
105104fveq2d 6862 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (∏t‘(TopOpen ∘ 𝑟)) = (∏t‘(TopOpen ∘ 𝑅)))
106 prdsval.o . . . . . . . . . . . 12 (𝜑𝑂 = (∏t‘(TopOpen ∘ 𝑅)))
107106ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → 𝑂 = (∏t‘(TopOpen ∘ 𝑅)))
108105, 107eqtr4d 2767 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (∏t‘(TopOpen ∘ 𝑟)) = 𝑂)
109108opeq2d 4844 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩ = ⟨(TopSet‘ndx), 𝑂⟩)
11039sseq2d 3979 . . . . . . . . . . . . . 14 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → ({𝑓, 𝑔} ⊆ 𝑣 ↔ {𝑓, 𝑔} ⊆ 𝐵))
11126fveq2d 6862 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (le‘(𝑟𝑥)) = (le‘(𝑅𝑥)))
112111breqd 5118 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥) ↔ (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
11332, 112raleqbidv 3319 . . . . . . . . . . . . . . 15 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
114113adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
115110, 114anbi12d 632 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))))
116115opabbidv 5173 . . . . . . . . . . . 12 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
117116adantr 480 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
118 prdsval.l . . . . . . . . . . . 12 (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
119118ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
120117, 119eqtr4d 2767 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))} = )
121120opeq2d 4844 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩ = ⟨(le‘ndx), ⟩)
12226fveq2d 6862 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (dist‘(𝑟𝑥)) = (dist‘(𝑅𝑥)))
123122oveqd 7404 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥)))
12432, 123mpteq12dv 5194 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))))
125124adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))))
126125rneqd 5902 . . . . . . . . . . . . . . 15 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) = ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))))
127126uneq1d 4130 . . . . . . . . . . . . . 14 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}))
128127supeq1d 9397 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))
12939, 39, 128mpoeq123dv 7464 . . . . . . . . . . . 12 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
130129adantr 480 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
131 prdsval.d . . . . . . . . . . . 12 (𝜑𝐷 = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
132131ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → 𝐷 = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
133130, 132eqtr4d 2767 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = 𝐷)
134133opeq2d 4844 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩ = ⟨(dist‘ndx), 𝐷⟩)
135109, 121, 134tpeq123d 4712 . . . . . . . 8 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → {⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} = {⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩})
136 simpr 484 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → = 𝐻)
137136opeq2d 4844 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(Hom ‘ndx), ⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
13851sqxpeqd 5670 . . . . . . . . . . . 12 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑣 × 𝑣) = (𝐵 × 𝐵))
139136oveqd 7404 . . . . . . . . . . . . 13 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ((2nd𝑎)𝑐) = ((2nd𝑎)𝐻𝑐))
140136fveq1d 6860 . . . . . . . . . . . . 13 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑎) = (𝐻𝑎))
14126fveq2d 6862 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (comp‘(𝑟𝑥)) = (comp‘(𝑅𝑥)))
142141oveqd 7404 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥)) = (⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥)))
143142oveqd 7404 . . . . . . . . . . . . . . 15 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)) = ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))
14432, 143mpteq12dv 5194 . . . . . . . . . . . . . 14 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥))) = (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))
145144ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥))) = (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))
146139, 140, 145mpoeq123dv 7464 . . . . . . . . . . . 12 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))) = (𝑑 ∈ ((2nd𝑎)𝐻𝑐), 𝑒 ∈ (𝐻𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))
147138, 51, 146mpoeq123dv 7464 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)𝐻𝑐), 𝑒 ∈ (𝐻𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
148 prdsval.x . . . . . . . . . . . 12 (𝜑 = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)𝐻𝑐), 𝑒 ∈ (𝐻𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
149148ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)𝐻𝑐), 𝑒 ∈ (𝐻𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
150147, 149eqtr4d 2767 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥))))) = )
151150opeq2d 4844 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩ = ⟨(comp‘ndx), ⟩)
152137, 151preq12d 4705 . . . . . . . 8 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩} = {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})
153135, 152uneq12d 4132 . . . . . . 7 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}) = ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩}))
154102, 153uneq12d 4132 . . . . . 6 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
15538, 50, 154csbied2 3899 . . . . 5 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
15624, 36, 155csbied2 3899 . . . 4 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
157156anasss 466 . . 3 ((𝜑 ∧ (𝑠 = 𝑆𝑟 = 𝑅)) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
158 prdsval.s . . . 4 (𝜑𝑆𝑊)
159158elexd 3471 . . 3 (𝜑𝑆 ∈ V)
160 prdsval.r . . . 4 (𝜑𝑅𝑍)
161160elexd 3471 . . 3 (𝜑𝑅 ∈ V)
162 tpex 7722 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∈ V
163 tpex 7722 . . . . . 6 {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩} ∈ V
164162, 163unex 7720 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∈ V
165 tpex 7722 . . . . . 6 {⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∈ V
166 prex 5392 . . . . . 6 {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩} ∈ V
167165, 166unex 7720 . . . . 5 ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩}) ∈ V
168164, 167unex 7720 . . . 4 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})) ∈ V
169168a1i 11 . . 3 (𝜑 → (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})) ∈ V)
1703, 157, 159, 161, 169ovmpod 7541 . 2 (𝜑 → (𝑆Xs𝑅) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
1711, 170eqtrid 2776 1 (𝜑𝑃 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  csb 3862  cun 3912  wss 3914  {csn 4589  {cpr 4591  {ctp 4593  cop 4595   cuni 4871   ciun 4955   class class class wbr 5107  {copab 5169  cmpt 5188   × cxp 5636  dom cdm 5638  ran crn 5639  ccom 5642  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  m cmap 8799  Xcixp 8870  supcsup 9391  0cc0 11068  *cxr 11207   < clt 11208  ndxcnx 17163  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  ·𝑖cip 17225  TopSetcts 17226  lecple 17227  distcds 17229  Hom chom 17231  compcco 17232  TopOpenctopn 17384  tcpt 17401   Σg cgsu 17403  Xscprds 17408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-dec 12650  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-prds 17410
This theorem is referenced by:  prdssca  17419  prdsbas  17420  prdsplusg  17421  prdsmulr  17422  prdsvsca  17423  prdsip  17424  prdsle  17425  prdsds  17427  prdstset  17429  prdshom  17430  prdsco  17431
  Copyright terms: Public domain W3C validator