Step | Hyp | Ref
| Expression |
1 | | prdsval.p |
. 2
⊢ 𝑃 = (𝑆Xs𝑅) |
2 | | df-prds 17207 |
. . . 4
⊢ Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})))) |
4 | | vex 3441 |
. . . . . . . . . . . 12
⊢ 𝑟 ∈ V |
5 | 4 | rnex 7791 |
. . . . . . . . . . 11
⊢ ran 𝑟 ∈ V |
6 | 5 | uniex 7626 |
. . . . . . . . . 10
⊢ ∪ ran 𝑟 ∈ V |
7 | 6 | rnex 7791 |
. . . . . . . . 9
⊢ ran ∪ ran 𝑟 ∈ V |
8 | 7 | uniex 7626 |
. . . . . . . 8
⊢ ∪ ran ∪ ran 𝑟 ∈ V |
9 | | baseid 16964 |
. . . . . . . . . . . 12
⊢ Base =
Slot (Base‘ndx) |
10 | 9 | strfvss 16937 |
. . . . . . . . . . 11
⊢
(Base‘(𝑟‘𝑥)) ⊆ ∪ ran
(𝑟‘𝑥) |
11 | | fvssunirn 6835 |
. . . . . . . . . . . 12
⊢ (𝑟‘𝑥) ⊆ ∪ ran
𝑟 |
12 | | rnss 5860 |
. . . . . . . . . . . 12
⊢ ((𝑟‘𝑥) ⊆ ∪ ran
𝑟 → ran (𝑟‘𝑥) ⊆ ran ∪
ran 𝑟) |
13 | | uniss 4852 |
. . . . . . . . . . . 12
⊢ (ran
(𝑟‘𝑥) ⊆ ran ∪
ran 𝑟 → ∪ ran (𝑟‘𝑥) ⊆ ∪ ran
∪ ran 𝑟) |
14 | 11, 12, 13 | mp2b 10 |
. . . . . . . . . . 11
⊢ ∪ ran (𝑟‘𝑥) ⊆ ∪ ran
∪ ran 𝑟 |
15 | 10, 14 | sstri 3935 |
. . . . . . . . . 10
⊢
(Base‘(𝑟‘𝑥)) ⊆ ∪ ran
∪ ran 𝑟 |
16 | 15 | rgenw 3066 |
. . . . . . . . 9
⊢
∀𝑥 ∈ dom
𝑟(Base‘(𝑟‘𝑥)) ⊆ ∪ ran
∪ ran 𝑟 |
17 | | iunss 4982 |
. . . . . . . . 9
⊢ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ ∪ ran
∪ ran 𝑟 ↔ ∀𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ ∪ ran
∪ ran 𝑟) |
18 | 16, 17 | mpbir 230 |
. . . . . . . 8
⊢ ∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ ∪ ran
∪ ran 𝑟 |
19 | 8, 18 | ssexi 5255 |
. . . . . . 7
⊢ ∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∈ V |
20 | | ixpssmap2g 8746 |
. . . . . . 7
⊢ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∈ V → X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ↑m dom 𝑟)) |
21 | 19, 20 | ax-mp 5 |
. . . . . 6
⊢ X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ↑m dom 𝑟) |
22 | | ovex 7340 |
. . . . . . 7
⊢ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ↑m dom 𝑟) ∈ V |
23 | 22 | ssex 5254 |
. . . . . 6
⊢ (X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ↑m dom 𝑟) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∈ V) |
24 | 21, 23 | mp1i 13 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∈ V) |
25 | | simpr 486 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
26 | 25 | fveq1d 6806 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑟‘𝑥) = (𝑅‘𝑥)) |
27 | 26 | fveq2d 6808 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (Base‘(𝑟‘𝑥)) = (Base‘(𝑅‘𝑥))) |
28 | 27 | ixpeq2dv 8732 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ 𝐼 (Base‘(𝑟‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
29 | 25 | dmeqd 5827 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑅) |
30 | | prdsval.i |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑅 = 𝐼) |
31 | 30 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑅 = 𝐼) |
32 | 29, 31 | eqtrd 2776 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑟 = 𝐼) |
33 | 32 | ixpeq1d 8728 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘(𝑟‘𝑥))) |
34 | | prdsval.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
35 | 34 | ad2antrr 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
36 | 28, 33, 35 | 3eqtr4d 2786 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) = 𝐵) |
37 | | prdsvallem 17214 |
. . . . . . 7
⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V |
38 | 37 | a1i 11 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V) |
39 | | simpr 486 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝑣 = 𝐵) |
40 | 32 | adantr 482 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → dom 𝑟 = 𝐼) |
41 | 40 | ixpeq1d 8728 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) |
42 | 26 | fveq2d 6808 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (Hom ‘(𝑟‘𝑥)) = (Hom ‘(𝑅‘𝑥))) |
43 | 42 | oveqd 7324 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) |
44 | 43 | ixpeq2dv 8732 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) |
45 | 44 | adantr 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) |
46 | 41, 45 | eqtrd 2776 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) |
47 | 39, 39, 46 | mpoeq123dv 7382 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
48 | | prdsval.h |
. . . . . . . 8
⊢ (𝜑 → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
49 | 48 | ad3antrrr 728 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
50 | 47, 49 | eqtr4d 2779 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) = 𝐻) |
51 | | simplr 767 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝑣 = 𝐵) |
52 | 51 | opeq2d 4816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(Base‘ndx), 𝑣〉 = 〈(Base‘ndx),
𝐵〉) |
53 | 26 | fveq2d 6808 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (+g‘(𝑟‘𝑥)) = (+g‘(𝑅‘𝑥))) |
54 | 53 | oveqd 7324 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))) |
55 | 32, 54 | mpteq12dv 5172 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
56 | 55 | adantr 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
57 | 39, 39, 56 | mpoeq123dv 7382 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
58 | 57 | adantr 482 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
59 | | prdsval.a |
. . . . . . . . . . . 12
⊢ (𝜑 → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
60 | 59 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
61 | 58, 60 | eqtr4d 2779 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)))) = + ) |
62 | 61 | opeq2d 4816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(+g‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉 = 〈(+g‘ndx),
+
〉) |
63 | 26 | fveq2d 6808 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (.r‘(𝑟‘𝑥)) = (.r‘(𝑅‘𝑥))) |
64 | 63 | oveqd 7324 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))) |
65 | 32, 64 | mpteq12dv 5172 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
66 | 65 | adantr 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
67 | 39, 39, 66 | mpoeq123dv 7382 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
68 | 67 | adantr 482 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
69 | | prdsval.t |
. . . . . . . . . . . 12
⊢ (𝜑 → × = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
70 | 69 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → × = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
71 | 68, 70 | eqtr4d 2779 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)))) = × ) |
72 | 71 | opeq2d 4816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉 = 〈(.r‘ndx),
×
〉) |
73 | 52, 62, 72 | tpeq123d 4688 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ×
〉}) |
74 | | simp-4r 782 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝑠 = 𝑆) |
75 | 74 | opeq2d 4816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(Scalar‘ndx), 𝑠〉 =
〈(Scalar‘ndx), 𝑆〉) |
76 | | simpllr 774 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝑠 = 𝑆) |
77 | 76 | fveq2d 6808 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (Base‘𝑠) = (Base‘𝑆)) |
78 | | prdsval.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 = (Base‘𝑆) |
79 | 77, 78 | eqtr4di 2794 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (Base‘𝑠) = 𝐾) |
80 | 26 | fveq2d 6808 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (
·𝑠 ‘(𝑟‘𝑥)) = ( ·𝑠
‘(𝑅‘𝑥))) |
81 | 80 | oveqd 7324 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥)) = (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))) |
82 | 32, 81 | mpteq12dv 5172 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
83 | 82 | adantr 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
84 | 79, 39, 83 | mpoeq123dv 7382 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
85 | 84 | adantr 482 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
86 | | prdsval.m |
. . . . . . . . . . . 12
⊢ (𝜑 → · = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
87 | 86 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → · = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
88 | 85, 87 | eqtr4d 2779 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥)))) = · ) |
89 | 88 | opeq2d 4816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉 = 〈(
·𝑠 ‘ndx), ·
〉) |
90 | 26 | fveq2d 6808 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) →
(·𝑖‘(𝑟‘𝑥)) =
(·𝑖‘(𝑅‘𝑥))) |
91 | 90 | oveqd 7324 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))) |
92 | 32, 91 | mpteq12dv 5172 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
93 | 92 | adantr 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
94 | 76, 93 | oveq12d 7325 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
95 | 39, 39, 94 | mpoeq123dv 7382 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
96 | 95 | adantr 482 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
97 | | prdsval.j |
. . . . . . . . . . . 12
⊢ (𝜑 → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
98 | 97 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
99 | 96, 98 | eqtr4d 2779 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))))) = , ) |
100 | 99 | opeq2d 4816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) →
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉 =
〈(·𝑖‘ndx), , 〉) |
101 | 75, 89, 100 | tpeq123d 4688 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {〈(Scalar‘ndx), 𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉} = {〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) |
102 | 73, 101 | uneq12d 4104 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |
103 | | simpllr 774 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝑟 = 𝑅) |
104 | 103 | coeq2d 5784 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (TopOpen ∘ 𝑟) = (TopOpen ∘ 𝑅)) |
105 | 104 | fveq2d 6808 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (∏t‘(TopOpen
∘ 𝑟)) =
(∏t‘(TopOpen ∘ 𝑅))) |
106 | | prdsval.o |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen
∘ 𝑅))) |
107 | 106 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝑂 = (∏t‘(TopOpen
∘ 𝑅))) |
108 | 105, 107 | eqtr4d 2779 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (∏t‘(TopOpen
∘ 𝑟)) = 𝑂) |
109 | 108 | opeq2d 4816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉 = 〈(TopSet‘ndx), 𝑂〉) |
110 | 39 | sseq2d 3958 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → ({𝑓, 𝑔} ⊆ 𝑣 ↔ {𝑓, 𝑔} ⊆ 𝐵)) |
111 | 26 | fveq2d 6808 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (le‘(𝑟‘𝑥)) = (le‘(𝑅‘𝑥))) |
112 | 111 | breqd 5092 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥) ↔ (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))) |
113 | 32, 112 | raleqbidv 3355 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥) ↔ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))) |
114 | 113 | adantr 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥) ↔ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))) |
115 | 110, 114 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
116 | 115 | opabbidv 5147 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
117 | 116 | adantr 482 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
118 | | prdsval.l |
. . . . . . . . . . . 12
⊢ (𝜑 → ≤ = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
119 | 118 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ≤ = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
120 | 117, 119 | eqtr4d 2779 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))} = ≤ ) |
121 | 120 | opeq2d 4816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉 = 〈(le‘ndx), ≤
〉) |
122 | 26 | fveq2d 6808 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (dist‘(𝑟‘𝑥)) = (dist‘(𝑅‘𝑥))) |
123 | 122 | oveqd 7324 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) |
124 | 32, 123 | mpteq12dv 5172 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
125 | 124 | adantr 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
126 | 125 | rneqd 5859 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) = ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
127 | 126 | uneq1d 4102 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}) = (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0})) |
128 | 127 | supeq1d 9253 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ) =
sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
)) |
129 | 39, 39, 128 | mpoeq123dv 7382 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
= (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
130 | 129 | adantr 482 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
= (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
131 | | prdsval.d |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
132 | 131 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
133 | 130, 132 | eqtr4d 2779 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
= 𝐷) |
134 | 133 | opeq2d 4816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉 = 〈(dist‘ndx), 𝐷〉) |
135 | 109, 121,
134 | tpeq123d 4688 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} = {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉}) |
136 | | simpr 486 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ℎ = 𝐻) |
137 | 136 | opeq2d 4816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(Hom ‘ndx), ℎ〉 = 〈(Hom ‘ndx),
𝐻〉) |
138 | 51 | sqxpeqd 5632 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑣 × 𝑣) = (𝐵 × 𝐵)) |
139 | 136 | oveqd 7324 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ((2nd ‘𝑎)ℎ𝑐) = ((2nd ‘𝑎)𝐻𝑐)) |
140 | 136 | fveq1d 6806 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (ℎ‘𝑎) = (𝐻‘𝑎)) |
141 | 26 | fveq2d 6808 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (comp‘(𝑟‘𝑥)) = (comp‘(𝑅‘𝑥))) |
142 | 141 | oveqd 7324 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (〈((1st
‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥)) = (〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))) |
143 | 142 | oveqd 7324 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)) = ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))) |
144 | 32, 143 | mpteq12dv 5172 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))) |
145 | 144 | ad2antrr 724 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))) |
146 | 139, 140,
145 | mpoeq123dv 7382 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))) = (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) |
147 | 138, 51, 146 | mpoeq123dv 7382 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) |
148 | | prdsval.x |
. . . . . . . . . . . 12
⊢ (𝜑 → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) |
149 | 148 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) |
150 | 147, 149 | eqtr4d 2779 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) = ∙ ) |
151 | 150 | opeq2d 4816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉 = 〈(comp‘ndx), ∙
〉) |
152 | 137, 151 | preq12d 4681 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx),
(𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉} = {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉}) |
153 | 135, 152 | uneq12d 4104 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}) = ({〈(TopSet‘ndx),
𝑂〉,
〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉})) |
154 | 102, 153 | uneq12d 4104 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉}
∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙
〉}))) |
155 | 38, 50, 154 | csbied2 3877 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → ⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉}
∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙
〉}))) |
156 | 24, 36, 155 | csbied2 3877 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉}
∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙
〉}))) |
157 | 156 | anasss 468 |
. . 3
⊢ ((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑟 = 𝑅)) → ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉}
∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙
〉}))) |
158 | | prdsval.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
159 | 158 | elexd 3457 |
. . 3
⊢ (𝜑 → 𝑆 ∈ V) |
160 | | prdsval.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
161 | 160 | elexd 3457 |
. . 3
⊢ (𝜑 → 𝑅 ∈ V) |
162 | | tpex 7629 |
. . . . . 6
⊢
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(.r‘ndx), × 〉} ∈
V |
163 | | tpex 7629 |
. . . . . 6
⊢
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉} ∈
V |
164 | 162, 163 | unex 7628 |
. . . . 5
⊢
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∈
V |
165 | | tpex 7629 |
. . . . . 6
⊢
{〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∈ V |
166 | | prex 5364 |
. . . . . 6
⊢
{〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙
〉} ∈ V |
167 | 165, 166 | unex 7628 |
. . . . 5
⊢
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉}) ∈ V |
168 | 164, 167 | unex 7628 |
. . . 4
⊢
(({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉})) ∈ V |
169 | 168 | a1i 11 |
. . 3
⊢ (𝜑 → (({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉})) ∈ V) |
170 | 3, 157, 159, 161, 169 | ovmpod 7457 |
. 2
⊢ (𝜑 → (𝑆Xs𝑅) = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉}))) |
171 | 1, 170 | eqtrid 2788 |
1
⊢ (𝜑 → 𝑃 = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉}))) |