MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsval Structured version   Visualization version   GIF version

Theorem prdsval 17398
Description: Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsval.p 𝑃 = (𝑆Xs𝑅)
prdsval.k 𝐟 = (Base‘𝑆)
prdsval.i (𝜑 → dom 𝑅 = 𝐌)
prdsval.b (𝜑 → 𝐵 = X𝑥 ∈ 𝐌 (Base‘(𝑅‘𝑥)))
prdsval.a (𝜑 → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))))
prdsval.t (𝜑 → × = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))))
prdsval.m (𝜑 → · = (𝑓 ∈ 𝐟, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥)))))
prdsval.j (𝜑 → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑆 Σg (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))))
prdsval.o (𝜑 → 𝑂 = (∏t‘(TopOpen ∘ 𝑅)))
prdsval.l (𝜑 → ≀ = {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐌 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))})
prdsval.d (𝜑 → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ sup((ran (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < )))
prdsval.h (𝜑 → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ X𝑥 ∈ 𝐌 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))))
prdsval.x (𝜑 → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↩ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↩ (𝑥 ∈ 𝐌 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))))
prdsval.s (𝜑 → 𝑆 ∈ 𝑊)
prdsval.r (𝜑 → 𝑅 ∈ 𝑍)
Assertion
Ref Expression
prdsval (𝜑 → 𝑃 = (({⟹(Base‘ndx), 𝐵⟩, ⟹(+g‘ndx), + ⟩, ⟹(.r‘ndx), × ⟩} ∪ {⟹(Scalar‘ndx), 𝑆⟩, ⟹( ·𝑠 ‘ndx), · ⟩, ⟹(·𝑖‘ndx), , ⟩}) ∪ ({⟹(TopSet‘ndx), 𝑂⟩, ⟹(le‘ndx), ≀ ⟩, ⟹(dist‘ndx), 𝐷⟩} ∪ {⟹(Hom ‘ndx), 𝐻⟩, ⟹(comp‘ndx), ∙ ⟩})))
Distinct variable groups:   𝑎,𝑐,𝑑,𝑒,𝑓,𝑔,𝐵   𝐻,𝑎,𝑐,𝑑,𝑒   𝑥,𝑎,𝜑,𝑐,𝑑,𝑒,𝑓,𝑔   𝑥,𝐌   𝑅,𝑎,𝑐,𝑑,𝑒,𝑓,𝑔,𝑥   𝑆,𝑎,𝑐,𝑑,𝑒,𝑓,𝑔,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝑃(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   + (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   ∙ (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   · (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   × (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝐻(𝑥,𝑓,𝑔)   , (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝐌(𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝐟(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   ≀ (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝑂(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝑊(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝑍(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)

Proof of Theorem prdsval
Dummy variables ℎ 𝑟 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsval.p . 2 𝑃 = (𝑆Xs𝑅)
2 df-prds 17390 . . . 4 Xs = (𝑠 ∈ V, 𝑟 ∈ V ↩ ⩋X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⊌⊋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⩌(({⟹(Base‘ndx), 𝑣⟩, ⟹(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩} ∪ {⟹(Scalar‘ndx), 𝑠⟩, ⟹( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))⟩}) ∪ ({⟹(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟹(le‘ndx), {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}⟩, ⟹(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ sup((ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟹(Hom ‘ndx), ℎ⟩, ⟹(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↩ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))⟩})))
32a1i 11 . . 3 (𝜑 → Xs = (𝑠 ∈ V, 𝑟 ∈ V ↩ ⩋X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⊌⊋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⩌(({⟹(Base‘ndx), 𝑣⟩, ⟹(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩} ∪ {⟹(Scalar‘ndx), 𝑠⟩, ⟹( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))⟩}) ∪ ({⟹(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟹(le‘ndx), {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}⟩, ⟹(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ sup((ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟹(Hom ‘ndx), ℎ⟩, ⟹(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↩ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))⟩}))))
4 vex 3479 . . . . . . . . . . . 12 𝑟 ∈ V
54rnex 7900 . . . . . . . . . . 11 ran 𝑟 ∈ V
65uniex 7728 . . . . . . . . . 10 ∪ ran 𝑟 ∈ V
76rnex 7900 . . . . . . . . 9 ran ∪ ran 𝑟 ∈ V
87uniex 7728 . . . . . . . 8 ∪ ran ∪ ran 𝑟 ∈ V
9 baseid 17144 . . . . . . . . . . . 12 Base = Slot (Base‘ndx)
109strfvss 17117 . . . . . . . . . . 11 (Base‘(𝑟‘𝑥)) ⊆ ∪ ran (𝑟‘𝑥)
11 fvssunirn 6922 . . . . . . . . . . . 12 (𝑟‘𝑥) ⊆ ∪ ran 𝑟
12 rnss 5937 . . . . . . . . . . . 12 ((𝑟‘𝑥) ⊆ ∪ ran 𝑟 → ran (𝑟‘𝑥) ⊆ ran ∪ ran 𝑟)
13 uniss 4916 . . . . . . . . . . . 12 (ran (𝑟‘𝑥) ⊆ ran ∪ ran 𝑟 → ∪ ran (𝑟‘𝑥) ⊆ ∪ ran ∪ ran 𝑟)
1411, 12, 13mp2b 10 . . . . . . . . . . 11 ∪ ran (𝑟‘𝑥) ⊆ ∪ ran ∪ ran 𝑟
1510, 14sstri 3991 . . . . . . . . . 10 (Base‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟
1615rgenw 3066 . . . . . . . . 9 ∀𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟
17 iunss 5048 . . . . . . . . 9 (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟 ↔ ∀𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟)
1816, 17mpbir 230 . . . . . . . 8 ∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟
198, 18ssexi 5322 . . . . . . 7 ∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∈ V
20 ixpssmap2g 8918 . . . . . . 7 (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∈ V → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ↑m dom 𝑟))
2119, 20ax-mp 5 . . . . . 6 X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ↑m dom 𝑟)
22 ovex 7439 . . . . . . 7 (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ↑m dom 𝑟) ∈ V
2322ssex 5321 . . . . . 6 (X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ↑m dom 𝑟) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∈ V)
2421, 23mp1i 13 . . . . 5 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∈ V)
25 simpr 486 . . . . . . . . 9 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅)
2625fveq1d 6891 . . . . . . . 8 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑟‘𝑥) = (𝑅‘𝑥))
2726fveq2d 6893 . . . . . . 7 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (Base‘(𝑟‘𝑥)) = (Base‘(𝑅‘𝑥)))
2827ixpeq2dv 8904 . . . . . 6 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ 𝐌 (Base‘(𝑟‘𝑥)) = X𝑥 ∈ 𝐌 (Base‘(𝑅‘𝑥)))
2925dmeqd 5904 . . . . . . . 8 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑅)
30 prdsval.i . . . . . . . . 9 (𝜑 → dom 𝑅 = 𝐌)
3130ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑅 = 𝐌)
3229, 31eqtrd 2773 . . . . . . 7 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑟 = 𝐌)
3332ixpeq1d 8900 . . . . . 6 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) = X𝑥 ∈ 𝐌 (Base‘(𝑟‘𝑥)))
34 prdsval.b . . . . . . 7 (𝜑 → 𝐵 = X𝑥 ∈ 𝐌 (Base‘(𝑅‘𝑥)))
3534ad2antrr 725 . . . . . 6 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → 𝐵 = X𝑥 ∈ 𝐌 (Base‘(𝑅‘𝑥)))
3628, 33, 353eqtr4d 2783 . . . . 5 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) = 𝐵)
37 prdsvallem 17397 . . . . . . 7 (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V
3837a1i 11 . . . . . 6 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V)
39 simpr 486 . . . . . . . 8 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝑣 = 𝐵)
4032adantr 482 . . . . . . . . . 10 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → dom 𝑟 = 𝐌)
4140ixpeq1d 8900 . . . . . . . . 9 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = X𝑥 ∈ 𝐌 ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)))
4226fveq2d 6893 . . . . . . . . . . . 12 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (Hom ‘(𝑟‘𝑥)) = (Hom ‘(𝑅‘𝑥)))
4342oveqd 7423 . . . . . . . . . . 11 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))
4443ixpeq2dv 8904 . . . . . . . . . 10 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ 𝐌 ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = X𝑥 ∈ 𝐌 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))
4544adantr 482 . . . . . . . . 9 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥 ∈ 𝐌 ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = X𝑥 ∈ 𝐌 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))
4641, 45eqtrd 2773 . . . . . . . 8 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = X𝑥 ∈ 𝐌 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))
4739, 39, 46mpoeq123dv 7481 . . . . . . 7 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ X𝑥 ∈ 𝐌 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))))
48 prdsval.h . . . . . . . 8 (𝜑 → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ X𝑥 ∈ 𝐌 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))))
4948ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ X𝑥 ∈ 𝐌 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))))
5047, 49eqtr4d 2776 . . . . . 6 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) = 𝐻)
51 simplr 768 . . . . . . . . . 10 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝑣 = 𝐵)
5251opeq2d 4880 . . . . . . . . 9 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ⟹(Base‘ndx), 𝑣⟩ = ⟹(Base‘ndx), 𝐵⟩)
5326fveq2d 6893 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (+g‘(𝑟‘𝑥)) = (+g‘(𝑅‘𝑥)))
5453oveqd 7423 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))
5532, 54mpteq12dv 5239 . . . . . . . . . . . . . 14 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))
5655adantr 482 . . . . . . . . . . . . 13 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))
5739, 39, 56mpoeq123dv 7481 . . . . . . . . . . . 12 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))))
5857adantr 482 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))))
59 prdsval.a . . . . . . . . . . . 12 (𝜑 → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))))
6059ad4antr 731 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))))
6158, 60eqtr4d 2776 . . . . . . . . . 10 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)))) = + )
6261opeq2d 4880 . . . . . . . . 9 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ⟹(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩ = ⟹(+g‘ndx), + ⟩)
6326fveq2d 6893 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (.r‘(𝑟‘𝑥)) = (.r‘(𝑅‘𝑥)))
6463oveqd 7423 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))
6532, 64mpteq12dv 5239 . . . . . . . . . . . . . 14 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))
6665adantr 482 . . . . . . . . . . . . 13 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))
6739, 39, 66mpoeq123dv 7481 . . . . . . . . . . . 12 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))))
6867adantr 482 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))))
69 prdsval.t . . . . . . . . . . . 12 (𝜑 → × = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))))
7069ad4antr 731 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → × = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))))
7168, 70eqtr4d 2776 . . . . . . . . . 10 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)))) = × )
7271opeq2d 4880 . . . . . . . . 9 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ⟹(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩ = ⟹(.r‘ndx), × ⟩)
7352, 62, 72tpeq123d 4752 . . . . . . . 8 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {⟹(Base‘ndx), 𝑣⟩, ⟹(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩} = {⟹(Base‘ndx), 𝐵⟩, ⟹(+g‘ndx), + ⟩, ⟹(.r‘ndx), × ⟩})
74 simp-4r 783 . . . . . . . . . 10 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝑠 = 𝑆)
7574opeq2d 4880 . . . . . . . . 9 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ⟹(Scalar‘ndx), 𝑠⟩ = ⟹(Scalar‘ndx), 𝑆⟩)
76 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝑠 = 𝑆)
7776fveq2d 6893 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (Base‘𝑠) = (Base‘𝑆))
78 prdsval.k . . . . . . . . . . . . . 14 𝐟 = (Base‘𝑆)
7977, 78eqtr4di 2791 . . . . . . . . . . . . 13 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (Base‘𝑠) = 𝐟)
8026fveq2d 6893 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ( ·𝑠 ‘(𝑟‘𝑥)) = ( ·𝑠 ‘(𝑅‘𝑥)))
8180oveqd 7423 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥)) = (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥)))
8232, 81mpteq12dv 5239 . . . . . . . . . . . . . 14 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐌 ↩ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥))))
8382adantr 482 . . . . . . . . . . . . 13 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐌 ↩ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥))))
8479, 39, 83mpoeq123dv 7481 . . . . . . . . . . . 12 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐟, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥)))))
8584adantr 482 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐟, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥)))))
86 prdsval.m . . . . . . . . . . . 12 (𝜑 → · = (𝑓 ∈ 𝐟, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥)))))
8786ad4antr 731 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → · = (𝑓 ∈ 𝐟, 𝑔 ∈ 𝐵 ↩ (𝑥 ∈ 𝐌 ↩ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥)))))
8885, 87eqtr4d 2776 . . . . . . . . . 10 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥)))) = · )
8988opeq2d 4880 . . . . . . . . 9 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ⟹( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩ = ⟹( ·𝑠 ‘ndx), · ⟩)
9026fveq2d 6893 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (·𝑖‘(𝑟‘𝑥)) = (·𝑖‘(𝑅‘𝑥)))
9190oveqd 7423 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))
9232, 91mpteq12dv 5239 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))
9392adantr 482 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))
9476, 93oveq12d 7424 . . . . . . . . . . . . 13 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑠 Σg (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑆 Σg (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))
9539, 39, 94mpoeq123dv 7481 . . . . . . . . . . . 12 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑆 Σg (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))))
9695adantr 482 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑆 Σg (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))))
97 prdsval.j . . . . . . . . . . . 12 (𝜑 → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑆 Σg (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))))
9897ad4antr 731 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ (𝑆 Σg (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))))
9996, 98eqtr4d 2776 . . . . . . . . . 10 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))))) = , )
10099opeq2d 4880 . . . . . . . . 9 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ⟹(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))⟩ = ⟹(·𝑖‘ndx), , ⟩)
10175, 89, 100tpeq123d 4752 . . . . . . . 8 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {⟹(Scalar‘ndx), 𝑠⟩, ⟹( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))⟩} = {⟹(Scalar‘ndx), 𝑆⟩, ⟹( ·𝑠 ‘ndx), · ⟩, ⟹(·𝑖‘ndx), , ⟩})
10273, 101uneq12d 4164 . . . . . . 7 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ({⟹(Base‘ndx), 𝑣⟩, ⟹(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩} ∪ {⟹(Scalar‘ndx), 𝑠⟩, ⟹( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))⟩}) = ({⟹(Base‘ndx), 𝐵⟩, ⟹(+g‘ndx), + ⟩, ⟹(.r‘ndx), × ⟩} ∪ {⟹(Scalar‘ndx), 𝑆⟩, ⟹( ·𝑠 ‘ndx), · ⟩, ⟹(·𝑖‘ndx), , ⟩}))
103 simpllr 775 . . . . . . . . . . . . 13 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝑟 = 𝑅)
104103coeq2d 5861 . . . . . . . . . . . 12 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (TopOpen ∘ 𝑟) = (TopOpen ∘ 𝑅))
105104fveq2d 6893 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (∏t‘(TopOpen ∘ 𝑟)) = (∏t‘(TopOpen ∘ 𝑅)))
106 prdsval.o . . . . . . . . . . . 12 (𝜑 → 𝑂 = (∏t‘(TopOpen ∘ 𝑅)))
107106ad4antr 731 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝑂 = (∏t‘(TopOpen ∘ 𝑅)))
108105, 107eqtr4d 2776 . . . . . . . . . 10 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (∏t‘(TopOpen ∘ 𝑟)) = 𝑂)
109108opeq2d 4880 . . . . . . . . 9 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ⟹(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩ = ⟹(TopSet‘ndx), 𝑂⟩)
11039sseq2d 4014 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → ({𝑓, 𝑔} ⊆ 𝑣 ↔ {𝑓, 𝑔} ⊆ 𝐵))
11126fveq2d 6893 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (le‘(𝑟‘𝑥)) = (le‘(𝑅‘𝑥)))
112111breqd 5159 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥) ↔ (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥)))
11332, 112raleqbidv 3343 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥) ↔ ∀𝑥 ∈ 𝐌 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥)))
114113adantr 482 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥) ↔ ∀𝑥 ∈ 𝐌 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥)))
115110, 114anbi12d 632 . . . . . . . . . . . . 13 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐌 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))))
116115opabbidv 5214 . . . . . . . . . . . 12 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))} = {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐌 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))})
117116adantr 482 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))} = {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐌 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))})
118 prdsval.l . . . . . . . . . . . 12 (𝜑 → ≀ = {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐌 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))})
119118ad4antr 731 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ≀ = {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐌 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))})
120117, 119eqtr4d 2776 . . . . . . . . . 10 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))} = ≀ )
121120opeq2d 4880 . . . . . . . . 9 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ⟹(le‘ndx), {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}⟩ = ⟹(le‘ndx), ≀ ⟩)
12226fveq2d 6893 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (dist‘(𝑟‘𝑥)) = (dist‘(𝑅‘𝑥)))
123122oveqd 7423 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥)))
12432, 123mpteq12dv 5239 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))))
125124adantr 482 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))))
126125rneqd 5936 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) = ran (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))))
127126uneq1d 4162 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}) = (ran (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}))
128127supeq1d 9438 . . . . . . . . . . . . 13 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → sup((ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
12939, 39, 128mpoeq123dv 7481 . . . . . . . . . . . 12 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ sup((ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < )) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ sup((ran (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < )))
130129adantr 482 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ sup((ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < )) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ sup((ran (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < )))
131 prdsval.d . . . . . . . . . . . 12 (𝜑 → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ sup((ran (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < )))
132131ad4antr 731 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↩ sup((ran (𝑥 ∈ 𝐌 ↩ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < )))
133130, 132eqtr4d 2776 . . . . . . . . . 10 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ sup((ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < )) = 𝐷)
134133opeq2d 4880 . . . . . . . . 9 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ⟹(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ sup((ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))⟩ = ⟹(dist‘ndx), 𝐷⟩)
135109, 121, 134tpeq123d 4752 . . . . . . . 8 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {⟹(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟹(le‘ndx), {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}⟩, ⟹(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ sup((ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))⟩} = {⟹(TopSet‘ndx), 𝑂⟩, ⟹(le‘ndx), ≀ ⟩, ⟹(dist‘ndx), 𝐷⟩})
136 simpr 486 . . . . . . . . . 10 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ℎ = 𝐻)
137136opeq2d 4880 . . . . . . . . 9 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ⟹(Hom ‘ndx), ℎ⟩ = ⟹(Hom ‘ndx), 𝐻⟩)
13851sqxpeqd 5708 . . . . . . . . . . . 12 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑣 × 𝑣) = (𝐵 × 𝐵))
139136oveqd 7423 . . . . . . . . . . . . 13 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ((2nd ‘𝑎)ℎ𝑐) = ((2nd ‘𝑎)𝐻𝑐))
140136fveq1d 6891 . . . . . . . . . . . . 13 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (ℎ‘𝑎) = (𝐻‘𝑎))
14126fveq2d 6893 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (comp‘(𝑟‘𝑥)) = (comp‘(𝑅‘𝑥)))
142141oveqd 7423 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥)) = (⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑅‘𝑥))(𝑐‘𝑥)))
143142oveqd 7423 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)) = ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))
14432, 143mpteq12dv 5239 . . . . . . . . . . . . . 14 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))) = (𝑥 ∈ 𝐌 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))
145144ad2antrr 725 . . . . . . . . . . . . 13 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))) = (𝑥 ∈ 𝐌 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))
146139, 140, 145mpoeq123dv 7481 . . . . . . . . . . . 12 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))) = (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↩ (𝑥 ∈ 𝐌 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))
147138, 51, 146mpoeq123dv 7481 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↩ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↩ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↩ (𝑥 ∈ 𝐌 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))))
148 prdsval.x . . . . . . . . . . . 12 (𝜑 → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↩ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↩ (𝑥 ∈ 𝐌 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))))
149148ad4antr 731 . . . . . . . . . . 11 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↩ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↩ (𝑥 ∈ 𝐌 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))))
150147, 149eqtr4d 2776 . . . . . . . . . 10 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↩ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) = ∙ )
151150opeq2d 4880 . . . . . . . . 9 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ⟹(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↩ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))⟩ = ⟹(comp‘ndx), ∙ ⟩)
152137, 151preq12d 4745 . . . . . . . 8 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {⟹(Hom ‘ndx), ℎ⟩, ⟹(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↩ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))⟩} = {⟹(Hom ‘ndx), 𝐻⟩, ⟹(comp‘ndx), ∙ ⟩})
153135, 152uneq12d 4164 . . . . . . 7 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ({⟹(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟹(le‘ndx), {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}⟩, ⟹(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ sup((ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟹(Hom ‘ndx), ℎ⟩, ⟹(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↩ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))⟩}) = ({⟹(TopSet‘ndx), 𝑂⟩, ⟹(le‘ndx), ≀ ⟩, ⟹(dist‘ndx), 𝐷⟩} ∪ {⟹(Hom ‘ndx), 𝐻⟩, ⟹(comp‘ndx), ∙ ⟩}))
154102, 153uneq12d 4164 . . . . . 6 (((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (({⟹(Base‘ndx), 𝑣⟩, ⟹(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩} ∪ {⟹(Scalar‘ndx), 𝑠⟩, ⟹( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))⟩}) ∪ ({⟹(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟹(le‘ndx), {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}⟩, ⟹(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ sup((ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟹(Hom ‘ndx), ℎ⟩, ⟹(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↩ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))⟩})) = (({⟹(Base‘ndx), 𝐵⟩, ⟹(+g‘ndx), + ⟩, ⟹(.r‘ndx), × ⟩} ∪ {⟹(Scalar‘ndx), 𝑆⟩, ⟹( ·𝑠 ‘ndx), · ⟩, ⟹(·𝑖‘ndx), , ⟩}) ∪ ({⟹(TopSet‘ndx), 𝑂⟩, ⟹(le‘ndx), ≀ ⟩, ⟹(dist‘ndx), 𝐷⟩} ∪ {⟹(Hom ‘ndx), 𝐻⟩, ⟹(comp‘ndx), ∙ ⟩})))
15538, 50, 154csbied2 3933 . . . . 5 ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → ⩋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⩌(({⟹(Base‘ndx), 𝑣⟩, ⟹(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩} ∪ {⟹(Scalar‘ndx), 𝑠⟩, ⟹( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))⟩}) ∪ ({⟹(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟹(le‘ndx), {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}⟩, ⟹(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ sup((ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟹(Hom ‘ndx), ℎ⟩, ⟹(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↩ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))⟩})) = (({⟹(Base‘ndx), 𝐵⟩, ⟹(+g‘ndx), + ⟩, ⟹(.r‘ndx), × ⟩} ∪ {⟹(Scalar‘ndx), 𝑆⟩, ⟹( ·𝑠 ‘ndx), · ⟩, ⟹(·𝑖‘ndx), , ⟩}) ∪ ({⟹(TopSet‘ndx), 𝑂⟩, ⟹(le‘ndx), ≀ ⟩, ⟹(dist‘ndx), 𝐷⟩} ∪ {⟹(Hom ‘ndx), 𝐻⟩, ⟹(comp‘ndx), ∙ ⟩})))
15624, 36, 155csbied2 3933 . . . 4 (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ⩋X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⊌⊋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⩌(({⟹(Base‘ndx), 𝑣⟩, ⟹(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩} ∪ {⟹(Scalar‘ndx), 𝑠⟩, ⟹( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))⟩}) ∪ ({⟹(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟹(le‘ndx), {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}⟩, ⟹(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ sup((ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟹(Hom ‘ndx), ℎ⟩, ⟹(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↩ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))⟩})) = (({⟹(Base‘ndx), 𝐵⟩, ⟹(+g‘ndx), + ⟩, ⟹(.r‘ndx), × ⟩} ∪ {⟹(Scalar‘ndx), 𝑆⟩, ⟹( ·𝑠 ‘ndx), · ⟩, ⟹(·𝑖‘ndx), , ⟩}) ∪ ({⟹(TopSet‘ndx), 𝑂⟩, ⟹(le‘ndx), ≀ ⟩, ⟹(dist‘ndx), 𝐷⟩} ∪ {⟹(Hom ‘ndx), 𝐻⟩, ⟹(comp‘ndx), ∙ ⟩})))
157156anasss 468 . . 3 ((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑟 = 𝑅)) → ⩋X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⊌⊋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⩌(({⟹(Base‘ndx), 𝑣⟩, ⟹(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩} ∪ {⟹(Scalar‘ndx), 𝑠⟩, ⟹( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↩ (𝑥 ∈ dom 𝑟 ↩ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟹(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))⟩}) ∪ ({⟹(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟹(le‘ndx), {⟚𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}⟩, ⟹(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↩ sup((ran (𝑥 ∈ dom 𝑟 ↩ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟹(Hom ‘ndx), ℎ⟩, ⟹(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↩ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↩ (𝑥 ∈ dom 𝑟 ↩ ((𝑑‘𝑥)(⟹((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))⟩})) = (({⟹(Base‘ndx), 𝐵⟩, ⟹(+g‘ndx), + ⟩, ⟹(.r‘ndx), × ⟩} ∪ {⟹(Scalar‘ndx), 𝑆⟩, ⟹( ·𝑠 ‘ndx), · ⟩, ⟹(·𝑖‘ndx), , ⟩}) ∪ ({⟹(TopSet‘ndx), 𝑂⟩, ⟹(le‘ndx), ≀ ⟩, ⟹(dist‘ndx), 𝐷⟩} ∪ {⟹(Hom ‘ndx), 𝐻⟩, ⟹(comp‘ndx), ∙ ⟩})))
158 prdsval.s . . . 4 (𝜑 → 𝑆 ∈ 𝑊)
159158elexd 3495 . . 3 (𝜑 → 𝑆 ∈ V)
160 prdsval.r . . . 4 (𝜑 → 𝑅 ∈ 𝑍)
161160elexd 3495 . . 3 (𝜑 → 𝑅 ∈ V)
162 tpex 7731 . . . . . 6 {⟹(Base‘ndx), 𝐵⟩, ⟹(+g‘ndx), + ⟩, ⟹(.r‘ndx), × ⟩} ∈ V
163 tpex 7731 . . . . . 6 {⟹(Scalar‘ndx), 𝑆⟩, ⟹( ·𝑠 ‘ndx), · ⟩, ⟹(·𝑖‘ndx), , ⟩} ∈ V
164162, 163unex 7730 . . . . 5 ({⟹(Base‘ndx), 𝐵⟩, ⟹(+g‘ndx), + ⟩, ⟹(.r‘ndx), × ⟩} ∪ {⟹(Scalar‘ndx), 𝑆⟩, ⟹( ·𝑠 ‘ndx), · ⟩, ⟹(·𝑖‘ndx), , ⟩}) ∈ V
165 tpex 7731 . . . . . 6 {⟹(TopSet‘ndx), 𝑂⟩, ⟹(le‘ndx), ≀ ⟩, ⟹(dist‘ndx), 𝐷⟩} ∈ V
166 prex 5432 . . . . . 6 {⟹(Hom ‘ndx), 𝐻⟩, ⟹(comp‘ndx), ∙ ⟩} ∈ V
167165, 166unex 7730 . . . . 5 ({⟹(TopSet‘ndx), 𝑂⟩, ⟹(le‘ndx), ≀ ⟩, ⟹(dist‘ndx), 𝐷⟩} ∪ {⟹(Hom ‘ndx), 𝐻⟩, ⟹(comp‘ndx), ∙ ⟩}) ∈ V
168164, 167unex 7730 . . . 4 (({⟹(Base‘ndx), 𝐵⟩, ⟹(+g‘ndx), + ⟩, ⟹(.r‘ndx), × ⟩} ∪ {⟹(Scalar‘ndx), 𝑆⟩, ⟹( ·𝑠 ‘ndx), · ⟩, ⟹(·𝑖‘ndx), , ⟩}) ∪ ({⟹(TopSet‘ndx), 𝑂⟩, ⟹(le‘ndx), ≀ ⟩, ⟹(dist‘ndx), 𝐷⟩} ∪ {⟹(Hom ‘ndx), 𝐻⟩, ⟹(comp‘ndx), ∙ ⟩})) ∈ V
169168a1i 11 . . 3 (𝜑 → (({⟹(Base‘ndx), 𝐵⟩, ⟹(+g‘ndx), + ⟩, ⟹(.r‘ndx), × ⟩} ∪ {⟹(Scalar‘ndx), 𝑆⟩, ⟹( ·𝑠 ‘ndx), · ⟩, ⟹(·𝑖‘ndx), , ⟩}) ∪ ({⟹(TopSet‘ndx), 𝑂⟩, ⟹(le‘ndx), ≀ ⟩, ⟹(dist‘ndx), 𝐷⟩} ∪ {⟹(Hom ‘ndx), 𝐻⟩, ⟹(comp‘ndx), ∙ ⟩})) ∈ V)
1703, 157, 159, 161, 169ovmpod 7557 . 2 (𝜑 → (𝑆Xs𝑅) = (({⟹(Base‘ndx), 𝐵⟩, ⟹(+g‘ndx), + ⟩, ⟹(.r‘ndx), × ⟩} ∪ {⟹(Scalar‘ndx), 𝑆⟩, ⟹( ·𝑠 ‘ndx), · ⟩, ⟹(·𝑖‘ndx), , ⟩}) ∪ ({⟹(TopSet‘ndx), 𝑂⟩, ⟹(le‘ndx), ≀ ⟩, ⟹(dist‘ndx), 𝐷⟩} ∪ {⟹(Hom ‘ndx), 𝐻⟩, ⟹(comp‘ndx), ∙ ⟩})))
1711, 170eqtrid 2785 1 (𝜑 → 𝑃 = (({⟹(Base‘ndx), 𝐵⟩, ⟹(+g‘ndx), + ⟩, ⟹(.r‘ndx), × ⟩} ∪ {⟹(Scalar‘ndx), 𝑆⟩, ⟹( ·𝑠 ‘ndx), · ⟩, ⟹(·𝑖‘ndx), , ⟩}) ∪ ({⟹(TopSet‘ndx), 𝑂⟩, ⟹(le‘ndx), ≀ ⟩, ⟹(dist‘ndx), 𝐷⟩} ∪ {⟹(Hom ‘ndx), 𝐻⟩, ⟹(comp‘ndx), ∙ ⟩})))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  âˆ€wral 3062  Vcvv 3475  âŠ‹csb 3893   ∪ cun 3946   ⊆ wss 3948  {csn 4628  {cpr 4630  {ctp 4632  âŸšcop 4634  âˆª cuni 4908  âˆª ciun 4997   class class class wbr 5148  {copab 5210   ↩ cmpt 5231   × cxp 5674  dom cdm 5676  ran crn 5677   ∘ ccom 5680  â€˜cfv 6541  (class class class)co 7406   ∈ cmpo 7408  1st c1st 7970  2nd c2nd 7971   ↑m cmap 8817  Xcixp 8888  supcsup 9432  0cc0 11107  â„*cxr 11244   < clt 11245  ndxcnx 17123  Basecbs 17141  +gcplusg 17194  .rcmulr 17195  Scalarcsca 17197   ·𝑠 cvsca 17198  Â·ð‘–cip 17199  TopSetcts 17200  lecple 17201  distcds 17203  Hom chom 17205  compcco 17206  TopOpenctopn 17364  âˆtcpt 17381   Σg cgsu 17383  Xscprds 17388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-map 8819  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-pnf 11247  df-mnf 11248  df-ltxr 11250  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-dec 12675  df-slot 17112  df-ndx 17124  df-base 17142  df-hom 17218  df-prds 17390
This theorem is referenced by:  prdssca  17399  prdsbas  17400  prdsplusg  17401  prdsmulr  17402  prdsvsca  17403  prdsip  17404  prdsle  17405  prdsds  17407  prdstset  17409  prdshom  17410  prdsco  17411
  Copyright terms: Public domain W3C validator