MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixpsn Structured version   Visualization version   GIF version

Theorem elixpsn 8927
Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
elixpsn (𝐴𝑉 → (𝐹X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦

Proof of Theorem elixpsn
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4637 . . . 4 (𝑧 = 𝐴 → {𝑧} = {𝐴})
21ixpeq1d 8899 . . 3 (𝑧 = 𝐴X𝑥 ∈ {𝑧}𝐵 = X𝑥 ∈ {𝐴}𝐵)
32eleq2d 2819 . 2 (𝑧 = 𝐴 → (𝐹X𝑥 ∈ {𝑧}𝐵𝐹X𝑥 ∈ {𝐴}𝐵))
4 opeq1 4872 . . . . 5 (𝑧 = 𝐴 → ⟨𝑧, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
54sneqd 4639 . . . 4 (𝑧 = 𝐴 → {⟨𝑧, 𝑦⟩} = {⟨𝐴, 𝑦⟩})
65eqeq2d 2743 . . 3 (𝑧 = 𝐴 → (𝐹 = {⟨𝑧, 𝑦⟩} ↔ 𝐹 = {⟨𝐴, 𝑦⟩}))
76rexbidv 3178 . 2 (𝑧 = 𝐴 → (∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩} ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
8 elex 3492 . . 3 (𝐹X𝑥 ∈ {𝑧}𝐵𝐹 ∈ V)
9 snex 5430 . . . . 5 {⟨𝑧, 𝑦⟩} ∈ V
10 eleq1 2821 . . . . 5 (𝐹 = {⟨𝑧, 𝑦⟩} → (𝐹 ∈ V ↔ {⟨𝑧, 𝑦⟩} ∈ V))
119, 10mpbiri 257 . . . 4 (𝐹 = {⟨𝑧, 𝑦⟩} → 𝐹 ∈ V)
1211rexlimivw 3151 . . 3 (∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩} → 𝐹 ∈ V)
13 eleq1 2821 . . . 4 (𝑤 = 𝐹 → (𝑤X𝑥 ∈ {𝑧}𝐵𝐹X𝑥 ∈ {𝑧}𝐵))
14 eqeq1 2736 . . . . 5 (𝑤 = 𝐹 → (𝑤 = {⟨𝑧, 𝑦⟩} ↔ 𝐹 = {⟨𝑧, 𝑦⟩}))
1514rexbidv 3178 . . . 4 (𝑤 = 𝐹 → (∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩} ↔ ∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩}))
16 vex 3478 . . . . . 6 𝑤 ∈ V
1716elixp 8894 . . . . 5 (𝑤X𝑥 ∈ {𝑧}𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤𝑥) ∈ 𝐵))
18 vex 3478 . . . . . . 7 𝑧 ∈ V
19 fveq2 6888 . . . . . . . 8 (𝑥 = 𝑧 → (𝑤𝑥) = (𝑤𝑧))
2019eleq1d 2818 . . . . . . 7 (𝑥 = 𝑧 → ((𝑤𝑥) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵))
2118, 20ralsn 4684 . . . . . 6 (∀𝑥 ∈ {𝑧} (𝑤𝑥) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵)
2221anbi2i 623 . . . . 5 ((𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤𝑥) ∈ 𝐵) ↔ (𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵))
23 simpl 483 . . . . . . . . 9 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → 𝑤 Fn {𝑧})
24 fveq2 6888 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑤𝑦) = (𝑤𝑧))
2524eleq1d 2818 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((𝑤𝑦) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵))
2618, 25ralsn 4684 . . . . . . . . . . 11 (∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵)
2726biimpri 227 . . . . . . . . . 10 ((𝑤𝑧) ∈ 𝐵 → ∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵)
2827adantl 482 . . . . . . . . 9 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → ∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵)
29 ffnfv 7114 . . . . . . . . 9 (𝑤:{𝑧}⟶𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵))
3023, 28, 29sylanbrc 583 . . . . . . . 8 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → 𝑤:{𝑧}⟶𝐵)
3118fsn2 7130 . . . . . . . 8 (𝑤:{𝑧}⟶𝐵 ↔ ((𝑤𝑧) ∈ 𝐵𝑤 = {⟨𝑧, (𝑤𝑧)⟩}))
3230, 31sylib 217 . . . . . . 7 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → ((𝑤𝑧) ∈ 𝐵𝑤 = {⟨𝑧, (𝑤𝑧)⟩}))
33 opeq2 4873 . . . . . . . . 9 (𝑦 = (𝑤𝑧) → ⟨𝑧, 𝑦⟩ = ⟨𝑧, (𝑤𝑧)⟩)
3433sneqd 4639 . . . . . . . 8 (𝑦 = (𝑤𝑧) → {⟨𝑧, 𝑦⟩} = {⟨𝑧, (𝑤𝑧)⟩})
3534rspceeqv 3632 . . . . . . 7 (((𝑤𝑧) ∈ 𝐵𝑤 = {⟨𝑧, (𝑤𝑧)⟩}) → ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
3632, 35syl 17 . . . . . 6 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
37 vex 3478 . . . . . . . . . . 11 𝑦 ∈ V
3818, 37fvsn 7175 . . . . . . . . . 10 ({⟨𝑧, 𝑦⟩}‘𝑧) = 𝑦
39 id 22 . . . . . . . . . 10 (𝑦𝐵𝑦𝐵)
4038, 39eqeltrid 2837 . . . . . . . . 9 (𝑦𝐵 → ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵)
4118, 37fnsn 6603 . . . . . . . . 9 {⟨𝑧, 𝑦⟩} Fn {𝑧}
4240, 41jctil 520 . . . . . . . 8 (𝑦𝐵 → ({⟨𝑧, 𝑦⟩} Fn {𝑧} ∧ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵))
43 fneq1 6637 . . . . . . . . 9 (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ↔ {⟨𝑧, 𝑦⟩} Fn {𝑧}))
44 fveq1 6887 . . . . . . . . . 10 (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧))
4544eleq1d 2818 . . . . . . . . 9 (𝑤 = {⟨𝑧, 𝑦⟩} → ((𝑤𝑧) ∈ 𝐵 ↔ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵))
4643, 45anbi12d 631 . . . . . . . 8 (𝑤 = {⟨𝑧, 𝑦⟩} → ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) ↔ ({⟨𝑧, 𝑦⟩} Fn {𝑧} ∧ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵)))
4742, 46syl5ibrcom 246 . . . . . . 7 (𝑦𝐵 → (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵)))
4847rexlimiv 3148 . . . . . 6 (∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵))
4936, 48impbii 208 . . . . 5 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) ↔ ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
5017, 22, 493bitri 296 . . . 4 (𝑤X𝑥 ∈ {𝑧}𝐵 ↔ ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
5113, 15, 50vtoclbg 3559 . . 3 (𝐹 ∈ V → (𝐹X𝑥 ∈ {𝑧}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩}))
528, 12, 51pm5.21nii 379 . 2 (𝐹X𝑥 ∈ {𝑧}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩})
533, 7, 52vtoclbg 3559 1 (𝐴𝑉 → (𝐹X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  {csn 4627  cop 4633   Fn wfn 6535  wf 6536  cfv 6540  Xcixp 8887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ixp 8888
This theorem is referenced by:  ixpsnf1o  8928  hoidmv1le  45296
  Copyright terms: Public domain W3C validator