Step | Hyp | Ref
| Expression |
1 | | sneq 4637 |
. . . 4
⊢ (𝑧 = 𝐴 → {𝑧} = {𝐴}) |
2 | 1 | ixpeq1d 8899 |
. . 3
⊢ (𝑧 = 𝐴 → X𝑥 ∈ {𝑧}𝐵 = X𝑥 ∈ {𝐴}𝐵) |
3 | 2 | eleq2d 2819 |
. 2
⊢ (𝑧 = 𝐴 → (𝐹 ∈ X𝑥 ∈ {𝑧}𝐵 ↔ 𝐹 ∈ X𝑥 ∈ {𝐴}𝐵)) |
4 | | opeq1 4872 |
. . . . 5
⊢ (𝑧 = 𝐴 → ⟨𝑧, 𝑦⟩ = ⟨𝐴, 𝑦⟩) |
5 | 4 | sneqd 4639 |
. . . 4
⊢ (𝑧 = 𝐴 → {⟨𝑧, 𝑦⟩} = {⟨𝐴, 𝑦⟩}) |
6 | 5 | eqeq2d 2743 |
. . 3
⊢ (𝑧 = 𝐴 → (𝐹 = {⟨𝑧, 𝑦⟩} ↔ 𝐹 = {⟨𝐴, 𝑦⟩})) |
7 | 6 | rexbidv 3178 |
. 2
⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 𝐹 = {⟨𝑧, 𝑦⟩} ↔ ∃𝑦 ∈ 𝐵 𝐹 = {⟨𝐴, 𝑦⟩})) |
8 | | elex 3492 |
. . 3
⊢ (𝐹 ∈ X𝑥 ∈
{𝑧}𝐵 → 𝐹 ∈ V) |
9 | | snex 5430 |
. . . . 5
⊢
{⟨𝑧, 𝑦⟩} ∈
V |
10 | | eleq1 2821 |
. . . . 5
⊢ (𝐹 = {⟨𝑧, 𝑦⟩} → (𝐹 ∈ V ↔ {⟨𝑧, 𝑦⟩} ∈ V)) |
11 | 9, 10 | mpbiri 257 |
. . . 4
⊢ (𝐹 = {⟨𝑧, 𝑦⟩} → 𝐹 ∈ V) |
12 | 11 | rexlimivw 3151 |
. . 3
⊢
(∃𝑦 ∈
𝐵 𝐹 = {⟨𝑧, 𝑦⟩} → 𝐹 ∈ V) |
13 | | eleq1 2821 |
. . . 4
⊢ (𝑤 = 𝐹 → (𝑤 ∈ X𝑥 ∈ {𝑧}𝐵 ↔ 𝐹 ∈ X𝑥 ∈ {𝑧}𝐵)) |
14 | | eqeq1 2736 |
. . . . 5
⊢ (𝑤 = 𝐹 → (𝑤 = {⟨𝑧, 𝑦⟩} ↔ 𝐹 = {⟨𝑧, 𝑦⟩})) |
15 | 14 | rexbidv 3178 |
. . . 4
⊢ (𝑤 = 𝐹 → (∃𝑦 ∈ 𝐵 𝑤 = {⟨𝑧, 𝑦⟩} ↔ ∃𝑦 ∈ 𝐵 𝐹 = {⟨𝑧, 𝑦⟩})) |
16 | | vex 3478 |
. . . . . 6
⊢ 𝑤 ∈ V |
17 | 16 | elixp 8894 |
. . . . 5
⊢ (𝑤 ∈ X𝑥 ∈
{𝑧}𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤‘𝑥) ∈ 𝐵)) |
18 | | vex 3478 |
. . . . . . 7
⊢ 𝑧 ∈ V |
19 | | fveq2 6888 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑤‘𝑥) = (𝑤‘𝑧)) |
20 | 19 | eleq1d 2818 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑤‘𝑥) ∈ 𝐵 ↔ (𝑤‘𝑧) ∈ 𝐵)) |
21 | 18, 20 | ralsn 4684 |
. . . . . 6
⊢
(∀𝑥 ∈
{𝑧} (𝑤‘𝑥) ∈ 𝐵 ↔ (𝑤‘𝑧) ∈ 𝐵) |
22 | 21 | anbi2i 623 |
. . . . 5
⊢ ((𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤‘𝑥) ∈ 𝐵) ↔ (𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵)) |
23 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → 𝑤 Fn {𝑧}) |
24 | | fveq2 6888 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝑤‘𝑦) = (𝑤‘𝑧)) |
25 | 24 | eleq1d 2818 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → ((𝑤‘𝑦) ∈ 𝐵 ↔ (𝑤‘𝑧) ∈ 𝐵)) |
26 | 18, 25 | ralsn 4684 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
{𝑧} (𝑤‘𝑦) ∈ 𝐵 ↔ (𝑤‘𝑧) ∈ 𝐵) |
27 | 26 | biimpri 227 |
. . . . . . . . . 10
⊢ ((𝑤‘𝑧) ∈ 𝐵 → ∀𝑦 ∈ {𝑧} (𝑤‘𝑦) ∈ 𝐵) |
28 | 27 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → ∀𝑦 ∈ {𝑧} (𝑤‘𝑦) ∈ 𝐵) |
29 | | ffnfv 7114 |
. . . . . . . . 9
⊢ (𝑤:{𝑧}⟶𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑦 ∈ {𝑧} (𝑤‘𝑦) ∈ 𝐵)) |
30 | 23, 28, 29 | sylanbrc 583 |
. . . . . . . 8
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → 𝑤:{𝑧}⟶𝐵) |
31 | 18 | fsn2 7130 |
. . . . . . . 8
⊢ (𝑤:{𝑧}⟶𝐵 ↔ ((𝑤‘𝑧) ∈ 𝐵 ∧ 𝑤 = {⟨𝑧, (𝑤‘𝑧)⟩})) |
32 | 30, 31 | sylib 217 |
. . . . . . 7
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → ((𝑤‘𝑧) ∈ 𝐵 ∧ 𝑤 = {⟨𝑧, (𝑤‘𝑧)⟩})) |
33 | | opeq2 4873 |
. . . . . . . . 9
⊢ (𝑦 = (𝑤‘𝑧) → ⟨𝑧, 𝑦⟩ = ⟨𝑧, (𝑤‘𝑧)⟩) |
34 | 33 | sneqd 4639 |
. . . . . . . 8
⊢ (𝑦 = (𝑤‘𝑧) → {⟨𝑧, 𝑦⟩} = {⟨𝑧, (𝑤‘𝑧)⟩}) |
35 | 34 | rspceeqv 3632 |
. . . . . . 7
⊢ (((𝑤‘𝑧) ∈ 𝐵 ∧ 𝑤 = {⟨𝑧, (𝑤‘𝑧)⟩}) → ∃𝑦 ∈ 𝐵 𝑤 = {⟨𝑧, 𝑦⟩}) |
36 | 32, 35 | syl 17 |
. . . . . 6
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → ∃𝑦 ∈ 𝐵 𝑤 = {⟨𝑧, 𝑦⟩}) |
37 | | vex 3478 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
38 | 18, 37 | fvsn 7175 |
. . . . . . . . . 10
⊢
({⟨𝑧, 𝑦⟩}‘𝑧) = 𝑦 |
39 | | id 22 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵) |
40 | 38, 39 | eqeltrid 2837 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵) |
41 | 18, 37 | fnsn 6603 |
. . . . . . . . 9
⊢
{⟨𝑧, 𝑦⟩} Fn {𝑧} |
42 | 40, 41 | jctil 520 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → ({⟨𝑧, 𝑦⟩} Fn {𝑧} ∧ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵)) |
43 | | fneq1 6637 |
. . . . . . . . 9
⊢ (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ↔ {⟨𝑧, 𝑦⟩} Fn {𝑧})) |
44 | | fveq1 6887 |
. . . . . . . . . 10
⊢ (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤‘𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧)) |
45 | 44 | eleq1d 2818 |
. . . . . . . . 9
⊢ (𝑤 = {⟨𝑧, 𝑦⟩} → ((𝑤‘𝑧) ∈ 𝐵 ↔ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵)) |
46 | 43, 45 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑤 = {⟨𝑧, 𝑦⟩} → ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) ↔ ({⟨𝑧, 𝑦⟩} Fn {𝑧} ∧ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵))) |
47 | 42, 46 | syl5ibrcom 246 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐵 → (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵))) |
48 | 47 | rexlimiv 3148 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐵 𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵)) |
49 | 36, 48 | impbii 208 |
. . . . 5
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑤 = {⟨𝑧, 𝑦⟩}) |
50 | 17, 22, 49 | 3bitri 296 |
. . . 4
⊢ (𝑤 ∈ X𝑥 ∈
{𝑧}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑤 = {⟨𝑧, 𝑦⟩}) |
51 | 13, 15, 50 | vtoclbg 3559 |
. . 3
⊢ (𝐹 ∈ V → (𝐹 ∈ X𝑥 ∈
{𝑧}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {⟨𝑧, 𝑦⟩})) |
52 | 8, 12, 51 | pm5.21nii 379 |
. 2
⊢ (𝐹 ∈ X𝑥 ∈
{𝑧}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {⟨𝑧, 𝑦⟩}) |
53 | 3, 7, 52 | vtoclbg 3559 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {⟨𝐴, 𝑦⟩})) |