Step | Hyp | Ref
| Expression |
1 | | sneq 4568 |
. . . 4
⊢ (𝑧 = 𝐴 → {𝑧} = {𝐴}) |
2 | 1 | ixpeq1d 8655 |
. . 3
⊢ (𝑧 = 𝐴 → X𝑥 ∈ {𝑧}𝐵 = X𝑥 ∈ {𝐴}𝐵) |
3 | 2 | eleq2d 2824 |
. 2
⊢ (𝑧 = 𝐴 → (𝐹 ∈ X𝑥 ∈ {𝑧}𝐵 ↔ 𝐹 ∈ X𝑥 ∈ {𝐴}𝐵)) |
4 | | opeq1 4801 |
. . . . 5
⊢ (𝑧 = 𝐴 → 〈𝑧, 𝑦〉 = 〈𝐴, 𝑦〉) |
5 | 4 | sneqd 4570 |
. . . 4
⊢ (𝑧 = 𝐴 → {〈𝑧, 𝑦〉} = {〈𝐴, 𝑦〉}) |
6 | 5 | eqeq2d 2749 |
. . 3
⊢ (𝑧 = 𝐴 → (𝐹 = {〈𝑧, 𝑦〉} ↔ 𝐹 = {〈𝐴, 𝑦〉})) |
7 | 6 | rexbidv 3225 |
. 2
⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 𝐹 = {〈𝑧, 𝑦〉} ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝐴, 𝑦〉})) |
8 | | elex 3440 |
. . 3
⊢ (𝐹 ∈ X𝑥 ∈
{𝑧}𝐵 → 𝐹 ∈ V) |
9 | | snex 5349 |
. . . . 5
⊢
{〈𝑧, 𝑦〉} ∈
V |
10 | | eleq1 2826 |
. . . . 5
⊢ (𝐹 = {〈𝑧, 𝑦〉} → (𝐹 ∈ V ↔ {〈𝑧, 𝑦〉} ∈ V)) |
11 | 9, 10 | mpbiri 257 |
. . . 4
⊢ (𝐹 = {〈𝑧, 𝑦〉} → 𝐹 ∈ V) |
12 | 11 | rexlimivw 3210 |
. . 3
⊢
(∃𝑦 ∈
𝐵 𝐹 = {〈𝑧, 𝑦〉} → 𝐹 ∈ V) |
13 | | eleq1 2826 |
. . . 4
⊢ (𝑤 = 𝐹 → (𝑤 ∈ X𝑥 ∈ {𝑧}𝐵 ↔ 𝐹 ∈ X𝑥 ∈ {𝑧}𝐵)) |
14 | | eqeq1 2742 |
. . . . 5
⊢ (𝑤 = 𝐹 → (𝑤 = {〈𝑧, 𝑦〉} ↔ 𝐹 = {〈𝑧, 𝑦〉})) |
15 | 14 | rexbidv 3225 |
. . . 4
⊢ (𝑤 = 𝐹 → (∃𝑦 ∈ 𝐵 𝑤 = {〈𝑧, 𝑦〉} ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝑧, 𝑦〉})) |
16 | | vex 3426 |
. . . . . 6
⊢ 𝑤 ∈ V |
17 | 16 | elixp 8650 |
. . . . 5
⊢ (𝑤 ∈ X𝑥 ∈
{𝑧}𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤‘𝑥) ∈ 𝐵)) |
18 | | vex 3426 |
. . . . . . 7
⊢ 𝑧 ∈ V |
19 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑤‘𝑥) = (𝑤‘𝑧)) |
20 | 19 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑤‘𝑥) ∈ 𝐵 ↔ (𝑤‘𝑧) ∈ 𝐵)) |
21 | 18, 20 | ralsn 4614 |
. . . . . 6
⊢
(∀𝑥 ∈
{𝑧} (𝑤‘𝑥) ∈ 𝐵 ↔ (𝑤‘𝑧) ∈ 𝐵) |
22 | 21 | anbi2i 622 |
. . . . 5
⊢ ((𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤‘𝑥) ∈ 𝐵) ↔ (𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵)) |
23 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → 𝑤 Fn {𝑧}) |
24 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝑤‘𝑦) = (𝑤‘𝑧)) |
25 | 24 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → ((𝑤‘𝑦) ∈ 𝐵 ↔ (𝑤‘𝑧) ∈ 𝐵)) |
26 | 18, 25 | ralsn 4614 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
{𝑧} (𝑤‘𝑦) ∈ 𝐵 ↔ (𝑤‘𝑧) ∈ 𝐵) |
27 | 26 | biimpri 227 |
. . . . . . . . . 10
⊢ ((𝑤‘𝑧) ∈ 𝐵 → ∀𝑦 ∈ {𝑧} (𝑤‘𝑦) ∈ 𝐵) |
28 | 27 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → ∀𝑦 ∈ {𝑧} (𝑤‘𝑦) ∈ 𝐵) |
29 | | ffnfv 6974 |
. . . . . . . . 9
⊢ (𝑤:{𝑧}⟶𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑦 ∈ {𝑧} (𝑤‘𝑦) ∈ 𝐵)) |
30 | 23, 28, 29 | sylanbrc 582 |
. . . . . . . 8
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → 𝑤:{𝑧}⟶𝐵) |
31 | 18 | fsn2 6990 |
. . . . . . . 8
⊢ (𝑤:{𝑧}⟶𝐵 ↔ ((𝑤‘𝑧) ∈ 𝐵 ∧ 𝑤 = {〈𝑧, (𝑤‘𝑧)〉})) |
32 | 30, 31 | sylib 217 |
. . . . . . 7
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → ((𝑤‘𝑧) ∈ 𝐵 ∧ 𝑤 = {〈𝑧, (𝑤‘𝑧)〉})) |
33 | | opeq2 4802 |
. . . . . . . . 9
⊢ (𝑦 = (𝑤‘𝑧) → 〈𝑧, 𝑦〉 = 〈𝑧, (𝑤‘𝑧)〉) |
34 | 33 | sneqd 4570 |
. . . . . . . 8
⊢ (𝑦 = (𝑤‘𝑧) → {〈𝑧, 𝑦〉} = {〈𝑧, (𝑤‘𝑧)〉}) |
35 | 34 | rspceeqv 3567 |
. . . . . . 7
⊢ (((𝑤‘𝑧) ∈ 𝐵 ∧ 𝑤 = {〈𝑧, (𝑤‘𝑧)〉}) → ∃𝑦 ∈ 𝐵 𝑤 = {〈𝑧, 𝑦〉}) |
36 | 32, 35 | syl 17 |
. . . . . 6
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → ∃𝑦 ∈ 𝐵 𝑤 = {〈𝑧, 𝑦〉}) |
37 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
38 | 18, 37 | fvsn 7035 |
. . . . . . . . . 10
⊢
({〈𝑧, 𝑦〉}‘𝑧) = 𝑦 |
39 | | id 22 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵) |
40 | 38, 39 | eqeltrid 2843 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → ({〈𝑧, 𝑦〉}‘𝑧) ∈ 𝐵) |
41 | 18, 37 | fnsn 6476 |
. . . . . . . . 9
⊢
{〈𝑧, 𝑦〉} Fn {𝑧} |
42 | 40, 41 | jctil 519 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → ({〈𝑧, 𝑦〉} Fn {𝑧} ∧ ({〈𝑧, 𝑦〉}‘𝑧) ∈ 𝐵)) |
43 | | fneq1 6508 |
. . . . . . . . 9
⊢ (𝑤 = {〈𝑧, 𝑦〉} → (𝑤 Fn {𝑧} ↔ {〈𝑧, 𝑦〉} Fn {𝑧})) |
44 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑤 = {〈𝑧, 𝑦〉} → (𝑤‘𝑧) = ({〈𝑧, 𝑦〉}‘𝑧)) |
45 | 44 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑤 = {〈𝑧, 𝑦〉} → ((𝑤‘𝑧) ∈ 𝐵 ↔ ({〈𝑧, 𝑦〉}‘𝑧) ∈ 𝐵)) |
46 | 43, 45 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑤 = {〈𝑧, 𝑦〉} → ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) ↔ ({〈𝑧, 𝑦〉} Fn {𝑧} ∧ ({〈𝑧, 𝑦〉}‘𝑧) ∈ 𝐵))) |
47 | 42, 46 | syl5ibrcom 246 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐵 → (𝑤 = {〈𝑧, 𝑦〉} → (𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵))) |
48 | 47 | rexlimiv 3208 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐵 𝑤 = {〈𝑧, 𝑦〉} → (𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵)) |
49 | 36, 48 | impbii 208 |
. . . . 5
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑤 = {〈𝑧, 𝑦〉}) |
50 | 17, 22, 49 | 3bitri 296 |
. . . 4
⊢ (𝑤 ∈ X𝑥 ∈
{𝑧}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑤 = {〈𝑧, 𝑦〉}) |
51 | 13, 15, 50 | vtoclbg 3497 |
. . 3
⊢ (𝐹 ∈ V → (𝐹 ∈ X𝑥 ∈
{𝑧}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝑧, 𝑦〉})) |
52 | 8, 12, 51 | pm5.21nii 379 |
. 2
⊢ (𝐹 ∈ X𝑥 ∈
{𝑧}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝑧, 𝑦〉}) |
53 | 3, 7, 52 | vtoclbg 3497 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝐴, 𝑦〉})) |