Step | Hyp | Ref
| Expression |
1 | | df-pt 16949 |
. 2
⊢
∏t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) |
2 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) |
3 | 2 | dmeqd 5774 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝑓 = dom 𝐹) |
4 | | fndm 6481 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
5 | 4 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝐹 = 𝐴) |
6 | 3, 5 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝑓 = 𝐴) |
7 | 6 | fneq2d 6473 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑔 Fn dom 𝑓 ↔ 𝑔 Fn 𝐴)) |
8 | 2 | fveq1d 6719 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑓‘𝑦) = (𝐹‘𝑦)) |
9 | 8 | eleq2d 2823 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ (𝑔‘𝑦) ∈ (𝐹‘𝑦))) |
10 | 6, 9 | raleqbidv 3313 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦))) |
11 | 6 | difeq1d 4036 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (dom 𝑓 ∖ 𝑧) = (𝐴 ∖ 𝑧)) |
12 | 8 | unieqd 4833 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ∪ (𝑓‘𝑦) = ∪ (𝐹‘𝑦)) |
13 | 12 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔‘𝑦) = ∪ (𝑓‘𝑦) ↔ (𝑔‘𝑦) = ∪ (𝐹‘𝑦))) |
14 | 11, 13 | raleqbidv 3313 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦) ↔ ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) |
15 | 14 | rexbidv 3216 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) |
16 | 7, 10, 15 | 3anbi123d 1438 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ↔ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)))) |
17 | 6 | ixpeq1d 8590 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → X𝑦 ∈ dom 𝑓(𝑔‘𝑦) = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) |
18 | 17 | eqeq2d 2748 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦) ↔ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))) |
19 | 16, 18 | anbi12d 634 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)))) |
20 | 19 | exbidv 1929 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)))) |
21 | 20 | abbidv 2807 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))}) |
22 | | ptval.1 |
. . . 4
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
23 | 21, 22 | eqtr4di 2796 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))} = 𝐵) |
24 | 23 | fveq2d 6721 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))}) = (topGen‘𝐵)) |
25 | | fnex 7033 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) |
26 | 25 | ancoms 462 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → 𝐹 ∈ V) |
27 | | fvexd 6732 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → (topGen‘𝐵) ∈ V) |
28 | 1, 24, 26, 27 | fvmptd2 6826 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → (∏t‘𝐹) = (topGen‘𝐵)) |