MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval Structured version   Visualization version   GIF version

Theorem ptval 23455
Description: The value of the product topology function. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptval.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptval ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘𝐵))
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧,𝐴   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-pt 17348 . 2 t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
2 simpr 484 . . . . . . . . . . 11 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
32dmeqd 5848 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
4 fndm 6585 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
54ad2antlr 727 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝐹 = 𝐴)
63, 5eqtrd 2764 . . . . . . . . 9 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝑓 = 𝐴)
76fneq2d 6576 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑔 Fn dom 𝑓𝑔 Fn 𝐴))
82fveq1d 6824 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑓𝑦) = (𝐹𝑦))
98eleq2d 2814 . . . . . . . . 9 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔𝑦) ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝐹𝑦)))
106, 9raleqbidv 3309 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦)))
116difeq1d 4076 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (dom 𝑓𝑧) = (𝐴𝑧))
128unieqd 4871 . . . . . . . . . . 11 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑓𝑦) = (𝐹𝑦))
1312eqeq2d 2740 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔𝑦) = (𝑓𝑦) ↔ (𝑔𝑦) = (𝐹𝑦)))
1411, 13raleqbidv 3309 . . . . . . . . 9 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)))
1514rexbidv 3153 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)))
167, 10, 153anbi123d 1438 . . . . . . 7 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ↔ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))))
176ixpeq1d 8836 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → X𝑦 ∈ dom 𝑓(𝑔𝑦) = X𝑦𝐴 (𝑔𝑦))
1817eqeq2d 2740 . . . . . . 7 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦) ↔ 𝑥 = X𝑦𝐴 (𝑔𝑦)))
1916, 18anbi12d 632 . . . . . 6 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))))
2019exbidv 1921 . . . . 5 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))))
2120abbidv 2795 . . . 4 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))})
22 ptval.1 . . . 4 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2321, 22eqtr4di 2782 . . 3 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))} = 𝐵)
2423fveq2d 6826 . 2 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}) = (topGen‘𝐵))
25 fnex 7153 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
2625ancoms 458 . 2 ((𝐴𝑉𝐹 Fn 𝐴) → 𝐹 ∈ V)
27 fvexd 6837 . 2 ((𝐴𝑉𝐹 Fn 𝐴) → (topGen‘𝐵) ∈ V)
281, 24, 26, 27fvmptd2 6938 1 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3436  cdif 3900   cuni 4858  dom cdm 5619   Fn wfn 6477  cfv 6482  Xcixp 8824  Fincfn 8872  topGenctg 17341  tcpt 17342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ixp 8825  df-pt 17348
This theorem is referenced by:  pttop  23467  ptopn  23468  ptuni  23479  ptval2  23486  ptpjcn  23496  ptpjopn  23497  ptclsg  23500  ptcnp  23507  prdstopn  23513  xkoptsub  23539  ptcmplem1  23937  tmdgsum2  23981  prdsxmslem2  24415  ptrecube  37600
  Copyright terms: Public domain W3C validator