MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval Structured version   Visualization version   GIF version

Theorem ptval 23074
Description: The value of the product topology function. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptval.1 𝐡 = {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))}
Assertion
Ref Expression
ptval ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) β†’ (∏tβ€˜πΉ) = (topGenβ€˜π΅))
Distinct variable groups:   π‘₯,𝑔,𝑦,𝑧,𝐴   𝑔,𝐹,π‘₯,𝑦,𝑧   𝑔,𝑉,π‘₯,𝑦,𝑧
Allowed substitution hints:   𝐡(π‘₯,𝑦,𝑧,𝑔)

Proof of Theorem ptval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-pt 17390 . 2 ∏t = (𝑓 ∈ V ↦ (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦))}))
2 simpr 486 . . . . . . . . . . 11 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ 𝑓 = 𝐹)
32dmeqd 5906 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ dom 𝑓 = dom 𝐹)
4 fndm 6653 . . . . . . . . . . 11 (𝐹 Fn 𝐴 β†’ dom 𝐹 = 𝐴)
54ad2antlr 726 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ dom 𝐹 = 𝐴)
63, 5eqtrd 2773 . . . . . . . . 9 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ dom 𝑓 = 𝐴)
76fneq2d 6644 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ (𝑔 Fn dom 𝑓 ↔ 𝑔 Fn 𝐴))
82fveq1d 6894 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ (π‘“β€˜π‘¦) = (πΉβ€˜π‘¦))
98eleq2d 2820 . . . . . . . . 9 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ ((π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ↔ (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦)))
106, 9raleqbidv 3343 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ (βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ↔ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦)))
116difeq1d 4122 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ (dom 𝑓 βˆ– 𝑧) = (𝐴 βˆ– 𝑧))
128unieqd 4923 . . . . . . . . . . 11 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ βˆͺ (π‘“β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦))
1312eqeq2d 2744 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ ((π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦) ↔ (π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)))
1411, 13raleqbidv 3343 . . . . . . . . 9 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ (βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦) ↔ βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)))
1514rexbidv 3179 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ (βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦) ↔ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)))
167, 10, 153anbi123d 1437 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ ((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ↔ (𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦))))
176ixpeq1d 8903 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦) = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))
1817eqeq2d 2744 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ (π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦) ↔ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦)))
1916, 18anbi12d 632 . . . . . 6 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ (((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦)) ↔ ((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))))
2019exbidv 1925 . . . . 5 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ (βˆƒπ‘”((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦)) ↔ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))))
2120abbidv 2802 . . . 4 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦))} = {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))})
22 ptval.1 . . . 4 𝐡 = {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))}
2321, 22eqtr4di 2791 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦))} = 𝐡)
2423fveq2d 6896 . 2 (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) β†’ (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦))}) = (topGenβ€˜π΅))
25 fnex 7219 . . 3 ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) β†’ 𝐹 ∈ V)
2625ancoms 460 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) β†’ 𝐹 ∈ V)
27 fvexd 6907 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) β†’ (topGenβ€˜π΅) ∈ V)
281, 24, 26, 27fvmptd2 7007 1 ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) β†’ (∏tβ€˜πΉ) = (topGenβ€˜π΅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  {cab 2710  βˆ€wral 3062  βˆƒwrex 3071  Vcvv 3475   βˆ– cdif 3946  βˆͺ cuni 4909  dom cdm 5677   Fn wfn 6539  β€˜cfv 6544  Xcixp 8891  Fincfn 8939  topGenctg 17383  βˆtcpt 17384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ixp 8892  df-pt 17390
This theorem is referenced by:  pttop  23086  ptopn  23087  ptuni  23098  ptval2  23105  ptpjcn  23115  ptpjopn  23116  ptclsg  23119  ptcnp  23126  prdstopn  23132  xkoptsub  23158  ptcmplem1  23556  tmdgsum2  23600  prdsxmslem2  24038  ptrecube  36488
  Copyright terms: Public domain W3C validator