MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval Structured version   Visualization version   GIF version

Theorem ptval 23508
Description: The value of the product topology function. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptval.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptval ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘𝐵))
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧,𝐴   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-pt 17458 . 2 t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
2 simpr 484 . . . . . . . . . . 11 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
32dmeqd 5885 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
4 fndm 6641 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
54ad2antlr 727 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝐹 = 𝐴)
63, 5eqtrd 2770 . . . . . . . . 9 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝑓 = 𝐴)
76fneq2d 6632 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑔 Fn dom 𝑓𝑔 Fn 𝐴))
82fveq1d 6878 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑓𝑦) = (𝐹𝑦))
98eleq2d 2820 . . . . . . . . 9 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔𝑦) ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝐹𝑦)))
106, 9raleqbidv 3325 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦)))
116difeq1d 4100 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (dom 𝑓𝑧) = (𝐴𝑧))
128unieqd 4896 . . . . . . . . . . 11 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑓𝑦) = (𝐹𝑦))
1312eqeq2d 2746 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔𝑦) = (𝑓𝑦) ↔ (𝑔𝑦) = (𝐹𝑦)))
1411, 13raleqbidv 3325 . . . . . . . . 9 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)))
1514rexbidv 3164 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)))
167, 10, 153anbi123d 1438 . . . . . . 7 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ↔ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))))
176ixpeq1d 8923 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → X𝑦 ∈ dom 𝑓(𝑔𝑦) = X𝑦𝐴 (𝑔𝑦))
1817eqeq2d 2746 . . . . . . 7 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦) ↔ 𝑥 = X𝑦𝐴 (𝑔𝑦)))
1916, 18anbi12d 632 . . . . . 6 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))))
2019exbidv 1921 . . . . 5 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))))
2120abbidv 2801 . . . 4 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))})
22 ptval.1 . . . 4 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2321, 22eqtr4di 2788 . . 3 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))} = 𝐵)
2423fveq2d 6880 . 2 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}) = (topGen‘𝐵))
25 fnex 7209 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
2625ancoms 458 . 2 ((𝐴𝑉𝐹 Fn 𝐴) → 𝐹 ∈ V)
27 fvexd 6891 . 2 ((𝐴𝑉𝐹 Fn 𝐴) → (topGen‘𝐵) ∈ V)
281, 24, 26, 27fvmptd2 6994 1 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wral 3051  wrex 3060  Vcvv 3459  cdif 3923   cuni 4883  dom cdm 5654   Fn wfn 6526  cfv 6531  Xcixp 8911  Fincfn 8959  topGenctg 17451  tcpt 17452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ixp 8912  df-pt 17458
This theorem is referenced by:  pttop  23520  ptopn  23521  ptuni  23532  ptval2  23539  ptpjcn  23549  ptpjopn  23550  ptclsg  23553  ptcnp  23560  prdstopn  23566  xkoptsub  23592  ptcmplem1  23990  tmdgsum2  24034  prdsxmslem2  24468  ptrecube  37644
  Copyright terms: Public domain W3C validator