MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval Structured version   Visualization version   GIF version

Theorem ptval 23480
Description: The value of the product topology function. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptval.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptval ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘𝐵))
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧,𝐴   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-pt 17343 . 2 t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
2 simpr 484 . . . . . . . . . . 11 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
32dmeqd 5840 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
4 fndm 6579 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
54ad2antlr 727 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝐹 = 𝐴)
63, 5eqtrd 2766 . . . . . . . . 9 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → dom 𝑓 = 𝐴)
76fneq2d 6570 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑔 Fn dom 𝑓𝑔 Fn 𝐴))
82fveq1d 6819 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑓𝑦) = (𝐹𝑦))
98eleq2d 2817 . . . . . . . . 9 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔𝑦) ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝐹𝑦)))
106, 9raleqbidv 3312 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦)))
116difeq1d 4070 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (dom 𝑓𝑧) = (𝐴𝑧))
128unieqd 4867 . . . . . . . . . . 11 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑓𝑦) = (𝐹𝑦))
1312eqeq2d 2742 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔𝑦) = (𝑓𝑦) ↔ (𝑔𝑦) = (𝐹𝑦)))
1411, 13raleqbidv 3312 . . . . . . . . 9 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)))
1514rexbidv 3156 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)))
167, 10, 153anbi123d 1438 . . . . . . 7 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → ((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ↔ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))))
176ixpeq1d 8828 . . . . . . . 8 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → X𝑦 ∈ dom 𝑓(𝑔𝑦) = X𝑦𝐴 (𝑔𝑦))
1817eqeq2d 2742 . . . . . . 7 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦) ↔ 𝑥 = X𝑦𝐴 (𝑔𝑦)))
1916, 18anbi12d 632 . . . . . 6 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))))
2019exbidv 1922 . . . . 5 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))))
2120abbidv 2797 . . . 4 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))})
22 ptval.1 . . . 4 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2321, 22eqtr4di 2784 . . 3 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))} = 𝐵)
2423fveq2d 6821 . 2 (((𝐴𝑉𝐹 Fn 𝐴) ∧ 𝑓 = 𝐹) → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}) = (topGen‘𝐵))
25 fnex 7146 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
2625ancoms 458 . 2 ((𝐴𝑉𝐹 Fn 𝐴) → 𝐹 ∈ V)
27 fvexd 6832 . 2 ((𝐴𝑉𝐹 Fn 𝐴) → (topGen‘𝐵) ∈ V)
281, 24, 26, 27fvmptd2 6932 1 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436  cdif 3894   cuni 4854  dom cdm 5611   Fn wfn 6471  cfv 6476  Xcixp 8816  Fincfn 8864  topGenctg 17336  tcpt 17337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ixp 8817  df-pt 17343
This theorem is referenced by:  pttop  23492  ptopn  23493  ptuni  23504  ptval2  23511  ptpjcn  23521  ptpjopn  23522  ptclsg  23525  ptcnp  23532  prdstopn  23538  xkoptsub  23564  ptcmplem1  23962  tmdgsum2  24006  prdsxmslem2  24439  ptrecube  37660
  Copyright terms: Public domain W3C validator