MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptuncnv Structured version   Visualization version   GIF version

Theorem ptuncnv 23195
Description: Exhibit the converse function of the map 𝐺 which joins two product topologies on disjoint index sets. (Contributed by Mario Carneiro, 8-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
ptunhmeo.x 𝑋 = 𝐾
ptunhmeo.y 𝑌 = 𝐿
ptunhmeo.j 𝐽 = (∏t𝐹)
ptunhmeo.k 𝐾 = (∏t‘(𝐹𝐴))
ptunhmeo.l 𝐿 = (∏t‘(𝐹𝐵))
ptunhmeo.g 𝐺 = (𝑥𝑋, 𝑦𝑌 ↦ (𝑥𝑦))
ptunhmeo.c (𝜑𝐶𝑉)
ptunhmeo.f (𝜑𝐹:𝐶⟶Top)
ptunhmeo.u (𝜑𝐶 = (𝐴𝐵))
ptunhmeo.i (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
ptuncnv (𝜑𝐺 = (𝑧 𝐽 ↦ ⟨(𝑧𝐴), (𝑧𝐵)⟩))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑧,𝐺   𝜑,𝑥,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑧,𝑉   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ptuncnv
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptunhmeo.g . . . 4 𝐺 = (𝑥𝑋, 𝑦𝑌 ↦ (𝑥𝑦))
2 vex 3450 . . . . . . 7 𝑥 ∈ V
3 vex 3450 . . . . . . 7 𝑦 ∈ V
42, 3op1std 7936 . . . . . 6 (𝑤 = ⟨𝑥, 𝑦⟩ → (1st𝑤) = 𝑥)
52, 3op2ndd 7937 . . . . . 6 (𝑤 = ⟨𝑥, 𝑦⟩ → (2nd𝑤) = 𝑦)
64, 5uneq12d 4129 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → ((1st𝑤) ∪ (2nd𝑤)) = (𝑥𝑦))
76mpompt 7475 . . . 4 (𝑤 ∈ (𝑋 × 𝑌) ↦ ((1st𝑤) ∪ (2nd𝑤))) = (𝑥𝑋, 𝑦𝑌 ↦ (𝑥𝑦))
81, 7eqtr4i 2762 . . 3 𝐺 = (𝑤 ∈ (𝑋 × 𝑌) ↦ ((1st𝑤) ∪ (2nd𝑤)))
9 xp1st 7958 . . . . . . 7 (𝑤 ∈ (𝑋 × 𝑌) → (1st𝑤) ∈ 𝑋)
109adantl 482 . . . . . 6 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → (1st𝑤) ∈ 𝑋)
11 ixpeq2 8856 . . . . . . . . . 10 (∀𝑘𝐴 ((𝐹𝐴)‘𝑘) = (𝐹𝑘) → X𝑘𝐴 ((𝐹𝐴)‘𝑘) = X𝑘𝐴 (𝐹𝑘))
12 fvres 6866 . . . . . . . . . . 11 (𝑘𝐴 → ((𝐹𝐴)‘𝑘) = (𝐹𝑘))
1312unieqd 4884 . . . . . . . . . 10 (𝑘𝐴 ((𝐹𝐴)‘𝑘) = (𝐹𝑘))
1411, 13mprg 3066 . . . . . . . . 9 X𝑘𝐴 ((𝐹𝐴)‘𝑘) = X𝑘𝐴 (𝐹𝑘)
15 ptunhmeo.c . . . . . . . . . . 11 (𝜑𝐶𝑉)
16 ssun1 4137 . . . . . . . . . . . 12 𝐴 ⊆ (𝐴𝐵)
17 ptunhmeo.u . . . . . . . . . . . 12 (𝜑𝐶 = (𝐴𝐵))
1816, 17sseqtrrid 4000 . . . . . . . . . . 11 (𝜑𝐴𝐶)
1915, 18ssexd 5286 . . . . . . . . . 10 (𝜑𝐴 ∈ V)
20 ptunhmeo.f . . . . . . . . . . 11 (𝜑𝐹:𝐶⟶Top)
2120, 18fssresd 6714 . . . . . . . . . 10 (𝜑 → (𝐹𝐴):𝐴⟶Top)
22 ptunhmeo.k . . . . . . . . . . 11 𝐾 = (∏t‘(𝐹𝐴))
2322ptuni 22982 . . . . . . . . . 10 ((𝐴 ∈ V ∧ (𝐹𝐴):𝐴⟶Top) → X𝑘𝐴 ((𝐹𝐴)‘𝑘) = 𝐾)
2419, 21, 23syl2anc 584 . . . . . . . . 9 (𝜑X𝑘𝐴 ((𝐹𝐴)‘𝑘) = 𝐾)
2514, 24eqtr3id 2785 . . . . . . . 8 (𝜑X𝑘𝐴 (𝐹𝑘) = 𝐾)
26 ptunhmeo.x . . . . . . . 8 𝑋 = 𝐾
2725, 26eqtr4di 2789 . . . . . . 7 (𝜑X𝑘𝐴 (𝐹𝑘) = 𝑋)
2827adantr 481 . . . . . 6 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → X𝑘𝐴 (𝐹𝑘) = 𝑋)
2910, 28eleqtrrd 2835 . . . . 5 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → (1st𝑤) ∈ X𝑘𝐴 (𝐹𝑘))
30 xp2nd 7959 . . . . . . 7 (𝑤 ∈ (𝑋 × 𝑌) → (2nd𝑤) ∈ 𝑌)
3130adantl 482 . . . . . 6 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → (2nd𝑤) ∈ 𝑌)
3217eqcomd 2737 . . . . . . . . . 10 (𝜑 → (𝐴𝐵) = 𝐶)
33 ptunhmeo.i . . . . . . . . . . 11 (𝜑 → (𝐴𝐵) = ∅)
34 uneqdifeq 4455 . . . . . . . . . . 11 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))
3518, 33, 34syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))
3632, 35mpbid 231 . . . . . . . . 9 (𝜑 → (𝐶𝐴) = 𝐵)
3736ixpeq1d 8854 . . . . . . . 8 (𝜑X𝑘 ∈ (𝐶𝐴) (𝐹𝑘) = X𝑘𝐵 (𝐹𝑘))
38 ixpeq2 8856 . . . . . . . . . . 11 (∀𝑘𝐵 ((𝐹𝐵)‘𝑘) = (𝐹𝑘) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = X𝑘𝐵 (𝐹𝑘))
39 fvres 6866 . . . . . . . . . . . 12 (𝑘𝐵 → ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
4039unieqd 4884 . . . . . . . . . . 11 (𝑘𝐵 ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
4138, 40mprg 3066 . . . . . . . . . 10 X𝑘𝐵 ((𝐹𝐵)‘𝑘) = X𝑘𝐵 (𝐹𝑘)
42 ssun2 4138 . . . . . . . . . . . . 13 𝐵 ⊆ (𝐴𝐵)
4342, 17sseqtrrid 4000 . . . . . . . . . . . 12 (𝜑𝐵𝐶)
4415, 43ssexd 5286 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
4520, 43fssresd 6714 . . . . . . . . . . 11 (𝜑 → (𝐹𝐵):𝐵⟶Top)
46 ptunhmeo.l . . . . . . . . . . . 12 𝐿 = (∏t‘(𝐹𝐵))
4746ptuni 22982 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = 𝐿)
4844, 45, 47syl2anc 584 . . . . . . . . . 10 (𝜑X𝑘𝐵 ((𝐹𝐵)‘𝑘) = 𝐿)
4941, 48eqtr3id 2785 . . . . . . . . 9 (𝜑X𝑘𝐵 (𝐹𝑘) = 𝐿)
50 ptunhmeo.y . . . . . . . . 9 𝑌 = 𝐿
5149, 50eqtr4di 2789 . . . . . . . 8 (𝜑X𝑘𝐵 (𝐹𝑘) = 𝑌)
5237, 51eqtrd 2771 . . . . . . 7 (𝜑X𝑘 ∈ (𝐶𝐴) (𝐹𝑘) = 𝑌)
5352adantr 481 . . . . . 6 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → X𝑘 ∈ (𝐶𝐴) (𝐹𝑘) = 𝑌)
5431, 53eleqtrrd 2835 . . . . 5 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → (2nd𝑤) ∈ X𝑘 ∈ (𝐶𝐴) (𝐹𝑘))
5518adantr 481 . . . . 5 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → 𝐴𝐶)
56 undifixp 8879 . . . . 5 (((1st𝑤) ∈ X𝑘𝐴 (𝐹𝑘) ∧ (2nd𝑤) ∈ X𝑘 ∈ (𝐶𝐴) (𝐹𝑘) ∧ 𝐴𝐶) → ((1st𝑤) ∪ (2nd𝑤)) ∈ X𝑘𝐶 (𝐹𝑘))
5729, 54, 55, 56syl3anc 1371 . . . 4 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → ((1st𝑤) ∪ (2nd𝑤)) ∈ X𝑘𝐶 (𝐹𝑘))
58 ptunhmeo.j . . . . . . 7 𝐽 = (∏t𝐹)
5958ptuni 22982 . . . . . 6 ((𝐶𝑉𝐹:𝐶⟶Top) → X𝑘𝐶 (𝐹𝑘) = 𝐽)
6015, 20, 59syl2anc 584 . . . . 5 (𝜑X𝑘𝐶 (𝐹𝑘) = 𝐽)
6160adantr 481 . . . 4 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → X𝑘𝐶 (𝐹𝑘) = 𝐽)
6257, 61eleqtrd 2834 . . 3 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝐽)
6318adantr 481 . . . . . 6 ((𝜑𝑧 𝐽) → 𝐴𝐶)
6460eleq2d 2818 . . . . . . 7 (𝜑 → (𝑧X𝑘𝐶 (𝐹𝑘) ↔ 𝑧 𝐽))
6564biimpar 478 . . . . . 6 ((𝜑𝑧 𝐽) → 𝑧X𝑘𝐶 (𝐹𝑘))
66 resixp 8878 . . . . . 6 ((𝐴𝐶𝑧X𝑘𝐶 (𝐹𝑘)) → (𝑧𝐴) ∈ X𝑘𝐴 (𝐹𝑘))
6763, 65, 66syl2anc 584 . . . . 5 ((𝜑𝑧 𝐽) → (𝑧𝐴) ∈ X𝑘𝐴 (𝐹𝑘))
6827adantr 481 . . . . 5 ((𝜑𝑧 𝐽) → X𝑘𝐴 (𝐹𝑘) = 𝑋)
6967, 68eleqtrd 2834 . . . 4 ((𝜑𝑧 𝐽) → (𝑧𝐴) ∈ 𝑋)
7043adantr 481 . . . . . 6 ((𝜑𝑧 𝐽) → 𝐵𝐶)
71 resixp 8878 . . . . . 6 ((𝐵𝐶𝑧X𝑘𝐶 (𝐹𝑘)) → (𝑧𝐵) ∈ X𝑘𝐵 (𝐹𝑘))
7270, 65, 71syl2anc 584 . . . . 5 ((𝜑𝑧 𝐽) → (𝑧𝐵) ∈ X𝑘𝐵 (𝐹𝑘))
7351adantr 481 . . . . 5 ((𝜑𝑧 𝐽) → X𝑘𝐵 (𝐹𝑘) = 𝑌)
7472, 73eleqtrd 2834 . . . 4 ((𝜑𝑧 𝐽) → (𝑧𝐵) ∈ 𝑌)
7569, 74opelxpd 5676 . . 3 ((𝜑𝑧 𝐽) → ⟨(𝑧𝐴), (𝑧𝐵)⟩ ∈ (𝑋 × 𝑌))
76 eqop 7968 . . . . 5 (𝑤 ∈ (𝑋 × 𝑌) → (𝑤 = ⟨(𝑧𝐴), (𝑧𝐵)⟩ ↔ ((1st𝑤) = (𝑧𝐴) ∧ (2nd𝑤) = (𝑧𝐵))))
7776ad2antrl 726 . . . 4 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (𝑤 = ⟨(𝑧𝐴), (𝑧𝐵)⟩ ↔ ((1st𝑤) = (𝑧𝐴) ∧ (2nd𝑤) = (𝑧𝐵))))
7865adantrl 714 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → 𝑧X𝑘𝐶 (𝐹𝑘))
79 ixpfn 8848 . . . . . . . . 9 (𝑧X𝑘𝐶 (𝐹𝑘) → 𝑧 Fn 𝐶)
80 fnresdm 6625 . . . . . . . . 9 (𝑧 Fn 𝐶 → (𝑧𝐶) = 𝑧)
8178, 79, 803syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (𝑧𝐶) = 𝑧)
8217reseq2d 5942 . . . . . . . . 9 (𝜑 → (𝑧𝐶) = (𝑧 ↾ (𝐴𝐵)))
8382adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (𝑧𝐶) = (𝑧 ↾ (𝐴𝐵)))
8481, 83eqtr3d 2773 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → 𝑧 = (𝑧 ↾ (𝐴𝐵)))
85 resundi 5956 . . . . . . 7 (𝑧 ↾ (𝐴𝐵)) = ((𝑧𝐴) ∪ (𝑧𝐵))
8684, 85eqtrdi 2787 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → 𝑧 = ((𝑧𝐴) ∪ (𝑧𝐵)))
87 uneq12 4123 . . . . . . 7 (((1st𝑤) = (𝑧𝐴) ∧ (2nd𝑤) = (𝑧𝐵)) → ((1st𝑤) ∪ (2nd𝑤)) = ((𝑧𝐴) ∪ (𝑧𝐵)))
8887eqeq2d 2742 . . . . . 6 (((1st𝑤) = (𝑧𝐴) ∧ (2nd𝑤) = (𝑧𝐵)) → (𝑧 = ((1st𝑤) ∪ (2nd𝑤)) ↔ 𝑧 = ((𝑧𝐴) ∪ (𝑧𝐵))))
8986, 88syl5ibrcom 246 . . . . 5 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (((1st𝑤) = (𝑧𝐴) ∧ (2nd𝑤) = (𝑧𝐵)) → 𝑧 = ((1st𝑤) ∪ (2nd𝑤))))
90 ixpfn 8848 . . . . . . . . . . . 12 ((1st𝑤) ∈ X𝑘𝐴 (𝐹𝑘) → (1st𝑤) Fn 𝐴)
9129, 90syl 17 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → (1st𝑤) Fn 𝐴)
9291adantrr 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (1st𝑤) Fn 𝐴)
93 dffn2 6675 . . . . . . . . . 10 ((1st𝑤) Fn 𝐴 ↔ (1st𝑤):𝐴⟶V)
9492, 93sylib 217 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (1st𝑤):𝐴⟶V)
9551adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → X𝑘𝐵 (𝐹𝑘) = 𝑌)
9631, 95eleqtrrd 2835 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → (2nd𝑤) ∈ X𝑘𝐵 (𝐹𝑘))
97 ixpfn 8848 . . . . . . . . . . . 12 ((2nd𝑤) ∈ X𝑘𝐵 (𝐹𝑘) → (2nd𝑤) Fn 𝐵)
9896, 97syl 17 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝑋 × 𝑌)) → (2nd𝑤) Fn 𝐵)
9998adantrr 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (2nd𝑤) Fn 𝐵)
100 dffn2 6675 . . . . . . . . . 10 ((2nd𝑤) Fn 𝐵 ↔ (2nd𝑤):𝐵⟶V)
10199, 100sylib 217 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (2nd𝑤):𝐵⟶V)
102 res0 5946 . . . . . . . . . . 11 ((1st𝑤) ↾ ∅) = ∅
103 res0 5946 . . . . . . . . . . 11 ((2nd𝑤) ↾ ∅) = ∅
104102, 103eqtr4i 2762 . . . . . . . . . 10 ((1st𝑤) ↾ ∅) = ((2nd𝑤) ↾ ∅)
10533adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (𝐴𝐵) = ∅)
106105reseq2d 5942 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → ((1st𝑤) ↾ (𝐴𝐵)) = ((1st𝑤) ↾ ∅))
107105reseq2d 5942 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → ((2nd𝑤) ↾ (𝐴𝐵)) = ((2nd𝑤) ↾ ∅))
108104, 106, 1073eqtr4a 2797 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → ((1st𝑤) ↾ (𝐴𝐵)) = ((2nd𝑤) ↾ (𝐴𝐵)))
109 fresaunres1 6720 . . . . . . . . 9 (((1st𝑤):𝐴⟶V ∧ (2nd𝑤):𝐵⟶V ∧ ((1st𝑤) ↾ (𝐴𝐵)) = ((2nd𝑤) ↾ (𝐴𝐵))) → (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐴) = (1st𝑤))
11094, 101, 108, 109syl3anc 1371 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐴) = (1st𝑤))
111110eqcomd 2737 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (1st𝑤) = (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐴))
112 fresaunres2 6719 . . . . . . . . 9 (((1st𝑤):𝐴⟶V ∧ (2nd𝑤):𝐵⟶V ∧ ((1st𝑤) ↾ (𝐴𝐵)) = ((2nd𝑤) ↾ (𝐴𝐵))) → (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐵) = (2nd𝑤))
11394, 101, 108, 112syl3anc 1371 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐵) = (2nd𝑤))
114113eqcomd 2737 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (2nd𝑤) = (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐵))
115111, 114jca 512 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → ((1st𝑤) = (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐴) ∧ (2nd𝑤) = (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐵)))
116 reseq1 5936 . . . . . . . 8 (𝑧 = ((1st𝑤) ∪ (2nd𝑤)) → (𝑧𝐴) = (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐴))
117116eqeq2d 2742 . . . . . . 7 (𝑧 = ((1st𝑤) ∪ (2nd𝑤)) → ((1st𝑤) = (𝑧𝐴) ↔ (1st𝑤) = (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐴)))
118 reseq1 5936 . . . . . . . 8 (𝑧 = ((1st𝑤) ∪ (2nd𝑤)) → (𝑧𝐵) = (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐵))
119118eqeq2d 2742 . . . . . . 7 (𝑧 = ((1st𝑤) ∪ (2nd𝑤)) → ((2nd𝑤) = (𝑧𝐵) ↔ (2nd𝑤) = (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐵)))
120117, 119anbi12d 631 . . . . . 6 (𝑧 = ((1st𝑤) ∪ (2nd𝑤)) → (((1st𝑤) = (𝑧𝐴) ∧ (2nd𝑤) = (𝑧𝐵)) ↔ ((1st𝑤) = (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐴) ∧ (2nd𝑤) = (((1st𝑤) ∪ (2nd𝑤)) ↾ 𝐵))))
121115, 120syl5ibrcom 246 . . . . 5 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (𝑧 = ((1st𝑤) ∪ (2nd𝑤)) → ((1st𝑤) = (𝑧𝐴) ∧ (2nd𝑤) = (𝑧𝐵))))
12289, 121impbid 211 . . . 4 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (((1st𝑤) = (𝑧𝐴) ∧ (2nd𝑤) = (𝑧𝐵)) ↔ 𝑧 = ((1st𝑤) ∪ (2nd𝑤))))
12377, 122bitrd 278 . . 3 ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 𝐽)) → (𝑤 = ⟨(𝑧𝐴), (𝑧𝐵)⟩ ↔ 𝑧 = ((1st𝑤) ∪ (2nd𝑤))))
1248, 62, 75, 123f1ocnv2d 7611 . 2 (𝜑 → (𝐺:(𝑋 × 𝑌)–1-1-onto 𝐽𝐺 = (𝑧 𝐽 ↦ ⟨(𝑧𝐴), (𝑧𝐵)⟩)))
125124simprd 496 1 (𝜑𝐺 = (𝑧 𝐽 ↦ ⟨(𝑧𝐴), (𝑧𝐵)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3446  cdif 3910  cun 3911  cin 3912  wss 3913  c0 4287  cop 4597   cuni 4870  cmpt 5193   × cxp 5636  ccnv 5637  cres 5640   Fn wfn 6496  wf 6497  1-1-ontowf1o 6500  cfv 6501  cmpo 7364  1st c1st 7924  2nd c2nd 7925  Xcixp 8842  tcpt 17334  Topctop 22279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-1o 8417  df-er 8655  df-ixp 8843  df-en 8891  df-fin 8894  df-fi 9356  df-topgen 17339  df-pt 17340  df-top 22280  df-bases 22333
This theorem is referenced by:  ptunhmeo  23196
  Copyright terms: Public domain W3C validator