Step | Hyp | Ref
| Expression |
1 | | ptunhmeo.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥 ∪ 𝑦)) |
2 | | vex 3426 |
. . . . . . 7
⊢ 𝑥 ∈ V |
3 | | vex 3426 |
. . . . . . 7
⊢ 𝑦 ∈ V |
4 | 2, 3 | op1std 7814 |
. . . . . 6
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (1st ‘𝑤) = 𝑥) |
5 | 2, 3 | op2ndd 7815 |
. . . . . 6
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (2nd ‘𝑤) = 𝑦) |
6 | 4, 5 | uneq12d 4094 |
. . . . 5
⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((1st ‘𝑤) ∪ (2nd
‘𝑤)) = (𝑥 ∪ 𝑦)) |
7 | 6 | mpompt 7366 |
. . . 4
⊢ (𝑤 ∈ (𝑋 × 𝑌) ↦ ((1st ‘𝑤) ∪ (2nd
‘𝑤))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥 ∪ 𝑦)) |
8 | 1, 7 | eqtr4i 2769 |
. . 3
⊢ 𝐺 = (𝑤 ∈ (𝑋 × 𝑌) ↦ ((1st ‘𝑤) ∪ (2nd
‘𝑤))) |
9 | | xp1st 7836 |
. . . . . . 7
⊢ (𝑤 ∈ (𝑋 × 𝑌) → (1st ‘𝑤) ∈ 𝑋) |
10 | 9 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (1st ‘𝑤) ∈ 𝑋) |
11 | | ixpeq2 8657 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
𝐴 ∪ ((𝐹
↾ 𝐴)‘𝑘) = ∪
(𝐹‘𝑘) → X𝑘 ∈ 𝐴 ∪ ((𝐹 ↾ 𝐴)‘𝑘) = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) |
12 | | fvres 6775 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑘) = (𝐹‘𝑘)) |
13 | 12 | unieqd 4850 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐴 → ∪ ((𝐹 ↾ 𝐴)‘𝑘) = ∪ (𝐹‘𝑘)) |
14 | 11, 13 | mprg 3077 |
. . . . . . . . 9
⊢ X𝑘 ∈
𝐴 ∪ ((𝐹
↾ 𝐴)‘𝑘) = X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) |
15 | | ptunhmeo.c |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
16 | | ssun1 4102 |
. . . . . . . . . . . 12
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
17 | | ptunhmeo.u |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 = (𝐴 ∪ 𝐵)) |
18 | 16, 17 | sseqtrrid 3970 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
19 | 15, 18 | ssexd 5243 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ V) |
20 | | ptunhmeo.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐶⟶Top) |
21 | 20, 18 | fssresd 6625 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶Top) |
22 | | ptunhmeo.k |
. . . . . . . . . . 11
⊢ 𝐾 =
(∏t‘(𝐹 ↾ 𝐴)) |
23 | 22 | ptuni 22653 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ (𝐹 ↾ 𝐴):𝐴⟶Top) → X𝑘 ∈
𝐴 ∪ ((𝐹
↾ 𝐴)‘𝑘) = ∪
𝐾) |
24 | 19, 21, 23 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → X𝑘 ∈
𝐴 ∪ ((𝐹
↾ 𝐴)‘𝑘) = ∪
𝐾) |
25 | 14, 24 | eqtr3id 2793 |
. . . . . . . 8
⊢ (𝜑 → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐾) |
26 | | ptunhmeo.x |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐾 |
27 | 25, 26 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝜑 → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) = 𝑋) |
28 | 27 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) = 𝑋) |
29 | 10, 28 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (1st ‘𝑤) ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)) |
30 | | xp2nd 7837 |
. . . . . . 7
⊢ (𝑤 ∈ (𝑋 × 𝑌) → (2nd ‘𝑤) ∈ 𝑌) |
31 | 30 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑤) ∈ 𝑌) |
32 | 17 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∪ 𝐵) = 𝐶) |
33 | | ptunhmeo.i |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
34 | | uneqdifeq 4420 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝐶 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐴 ∪ 𝐵) = 𝐶 ↔ (𝐶 ∖ 𝐴) = 𝐵)) |
35 | 18, 33, 34 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ∪ 𝐵) = 𝐶 ↔ (𝐶 ∖ 𝐴) = 𝐵)) |
36 | 32, 35 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 ∖ 𝐴) = 𝐵) |
37 | 36 | ixpeq1d 8655 |
. . . . . . . 8
⊢ (𝜑 → X𝑘 ∈
(𝐶 ∖ 𝐴)∪
(𝐹‘𝑘) = X𝑘 ∈ 𝐵 ∪ (𝐹‘𝑘)) |
38 | | ixpeq2 8657 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
𝐵 ∪ ((𝐹
↾ 𝐵)‘𝑘) = ∪
(𝐹‘𝑘) → X𝑘 ∈ 𝐵 ∪ ((𝐹 ↾ 𝐵)‘𝑘) = X𝑘 ∈ 𝐵 ∪ (𝐹‘𝑘)) |
39 | | fvres 6775 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑘) = (𝐹‘𝑘)) |
40 | 39 | unieqd 4850 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐵 → ∪ ((𝐹 ↾ 𝐵)‘𝑘) = ∪ (𝐹‘𝑘)) |
41 | 38, 40 | mprg 3077 |
. . . . . . . . . 10
⊢ X𝑘 ∈
𝐵 ∪ ((𝐹
↾ 𝐵)‘𝑘) = X𝑘 ∈
𝐵 ∪ (𝐹‘𝑘) |
42 | | ssun2 4103 |
. . . . . . . . . . . . 13
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
43 | 42, 17 | sseqtrrid 3970 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
44 | 15, 43 | ssexd 5243 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ V) |
45 | 20, 43 | fssresd 6625 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵⟶Top) |
46 | | ptunhmeo.l |
. . . . . . . . . . . 12
⊢ 𝐿 =
(∏t‘(𝐹 ↾ 𝐵)) |
47 | 46 | ptuni 22653 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ V ∧ (𝐹 ↾ 𝐵):𝐵⟶Top) → X𝑘 ∈
𝐵 ∪ ((𝐹
↾ 𝐵)‘𝑘) = ∪
𝐿) |
48 | 44, 45, 47 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → X𝑘 ∈
𝐵 ∪ ((𝐹
↾ 𝐵)‘𝑘) = ∪
𝐿) |
49 | 41, 48 | eqtr3id 2793 |
. . . . . . . . 9
⊢ (𝜑 → X𝑘 ∈
𝐵 ∪ (𝐹‘𝑘) = ∪ 𝐿) |
50 | | ptunhmeo.y |
. . . . . . . . 9
⊢ 𝑌 = ∪
𝐿 |
51 | 49, 50 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝜑 → X𝑘 ∈
𝐵 ∪ (𝐹‘𝑘) = 𝑌) |
52 | 37, 51 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → X𝑘 ∈
(𝐶 ∖ 𝐴)∪
(𝐹‘𝑘) = 𝑌) |
53 | 52 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → X𝑘 ∈ (𝐶 ∖ 𝐴)∪ (𝐹‘𝑘) = 𝑌) |
54 | 31, 53 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑤) ∈ X𝑘 ∈
(𝐶 ∖ 𝐴)∪
(𝐹‘𝑘)) |
55 | 18 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → 𝐴 ⊆ 𝐶) |
56 | | undifixp 8680 |
. . . . 5
⊢
(((1st ‘𝑤) ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∧ (2nd ‘𝑤) ∈ X𝑘 ∈
(𝐶 ∖ 𝐴)∪
(𝐹‘𝑘) ∧ 𝐴 ⊆ 𝐶) → ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∈ X𝑘 ∈
𝐶 ∪ (𝐹‘𝑘)) |
57 | 29, 54, 55, 56 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∈ X𝑘 ∈
𝐶 ∪ (𝐹‘𝑘)) |
58 | | ptunhmeo.j |
. . . . . . 7
⊢ 𝐽 =
(∏t‘𝐹) |
59 | 58 | ptuni 22653 |
. . . . . 6
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐹:𝐶⟶Top) → X𝑘 ∈
𝐶 ∪ (𝐹‘𝑘) = ∪ 𝐽) |
60 | 15, 20, 59 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → X𝑘 ∈
𝐶 ∪ (𝐹‘𝑘) = ∪ 𝐽) |
61 | 60 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → X𝑘 ∈ 𝐶 ∪ (𝐹‘𝑘) = ∪ 𝐽) |
62 | 57, 61 | eleqtrd 2841 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∈ ∪ 𝐽) |
63 | 18 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → 𝐴 ⊆ 𝐶) |
64 | 60 | eleq2d 2824 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ X𝑘 ∈ 𝐶 ∪ (𝐹‘𝑘) ↔ 𝑧 ∈ ∪ 𝐽)) |
65 | 64 | biimpar 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → 𝑧 ∈ X𝑘 ∈ 𝐶 ∪ (𝐹‘𝑘)) |
66 | | resixp 8679 |
. . . . . 6
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝑧 ∈ X𝑘 ∈ 𝐶 ∪ (𝐹‘𝑘)) → (𝑧 ↾ 𝐴) ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) |
67 | 63, 65, 66 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → (𝑧 ↾ 𝐴) ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) |
68 | 27 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) = 𝑋) |
69 | 67, 68 | eleqtrd 2841 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → (𝑧 ↾ 𝐴) ∈ 𝑋) |
70 | 43 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → 𝐵 ⊆ 𝐶) |
71 | | resixp 8679 |
. . . . . 6
⊢ ((𝐵 ⊆ 𝐶 ∧ 𝑧 ∈ X𝑘 ∈ 𝐶 ∪ (𝐹‘𝑘)) → (𝑧 ↾ 𝐵) ∈ X𝑘 ∈ 𝐵 ∪ (𝐹‘𝑘)) |
72 | 70, 65, 71 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → (𝑧 ↾ 𝐵) ∈ X𝑘 ∈ 𝐵 ∪ (𝐹‘𝑘)) |
73 | 51 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → X𝑘 ∈
𝐵 ∪ (𝐹‘𝑘) = 𝑌) |
74 | 72, 73 | eleqtrd 2841 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → (𝑧 ↾ 𝐵) ∈ 𝑌) |
75 | 69, 74 | opelxpd 5618 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉 ∈ (𝑋 × 𝑌)) |
76 | | eqop 7846 |
. . . . 5
⊢ (𝑤 ∈ (𝑋 × 𝑌) → (𝑤 = 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉 ↔ ((1st ‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)))) |
77 | 76 | ad2antrl 724 |
. . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (𝑤 = 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉 ↔ ((1st ‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)))) |
78 | 65 | adantrl 712 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → 𝑧 ∈ X𝑘 ∈ 𝐶 ∪ (𝐹‘𝑘)) |
79 | | ixpfn 8649 |
. . . . . . . . 9
⊢ (𝑧 ∈ X𝑘 ∈
𝐶 ∪ (𝐹‘𝑘) → 𝑧 Fn 𝐶) |
80 | | fnresdm 6535 |
. . . . . . . . 9
⊢ (𝑧 Fn 𝐶 → (𝑧 ↾ 𝐶) = 𝑧) |
81 | 78, 79, 80 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (𝑧 ↾ 𝐶) = 𝑧) |
82 | 17 | reseq2d 5880 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ↾ 𝐶) = (𝑧 ↾ (𝐴 ∪ 𝐵))) |
83 | 82 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (𝑧 ↾ 𝐶) = (𝑧 ↾ (𝐴 ∪ 𝐵))) |
84 | 81, 83 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → 𝑧 = (𝑧 ↾ (𝐴 ∪ 𝐵))) |
85 | | resundi 5894 |
. . . . . . 7
⊢ (𝑧 ↾ (𝐴 ∪ 𝐵)) = ((𝑧 ↾ 𝐴) ∪ (𝑧 ↾ 𝐵)) |
86 | 84, 85 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → 𝑧 = ((𝑧 ↾ 𝐴) ∪ (𝑧 ↾ 𝐵))) |
87 | | uneq12 4088 |
. . . . . . 7
⊢
(((1st ‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)) → ((1st ‘𝑤) ∪ (2nd
‘𝑤)) = ((𝑧 ↾ 𝐴) ∪ (𝑧 ↾ 𝐵))) |
88 | 87 | eqeq2d 2749 |
. . . . . 6
⊢
(((1st ‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)) → (𝑧 = ((1st ‘𝑤) ∪ (2nd ‘𝑤)) ↔ 𝑧 = ((𝑧 ↾ 𝐴) ∪ (𝑧 ↾ 𝐵)))) |
89 | 86, 88 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (((1st
‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)) → 𝑧 = ((1st ‘𝑤) ∪ (2nd ‘𝑤)))) |
90 | | ixpfn 8649 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑤) ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) → (1st ‘𝑤) Fn 𝐴) |
91 | 29, 90 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (1st ‘𝑤) Fn 𝐴) |
92 | 91 | adantrr 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (1st
‘𝑤) Fn 𝐴) |
93 | | dffn2 6586 |
. . . . . . . . . 10
⊢
((1st ‘𝑤) Fn 𝐴 ↔ (1st ‘𝑤):𝐴⟶V) |
94 | 92, 93 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (1st
‘𝑤):𝐴⟶V) |
95 | 51 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → X𝑘 ∈ 𝐵 ∪ (𝐹‘𝑘) = 𝑌) |
96 | 31, 95 | eleqtrrd 2842 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑤) ∈ X𝑘 ∈
𝐵 ∪ (𝐹‘𝑘)) |
97 | | ixpfn 8649 |
. . . . . . . . . . . 12
⊢
((2nd ‘𝑤) ∈ X𝑘 ∈ 𝐵 ∪ (𝐹‘𝑘) → (2nd ‘𝑤) Fn 𝐵) |
98 | 96, 97 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑤) Fn 𝐵) |
99 | 98 | adantrr 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (2nd
‘𝑤) Fn 𝐵) |
100 | | dffn2 6586 |
. . . . . . . . . 10
⊢
((2nd ‘𝑤) Fn 𝐵 ↔ (2nd ‘𝑤):𝐵⟶V) |
101 | 99, 100 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (2nd
‘𝑤):𝐵⟶V) |
102 | | res0 5884 |
. . . . . . . . . . 11
⊢
((1st ‘𝑤) ↾ ∅) = ∅ |
103 | | res0 5884 |
. . . . . . . . . . 11
⊢
((2nd ‘𝑤) ↾ ∅) = ∅ |
104 | 102, 103 | eqtr4i 2769 |
. . . . . . . . . 10
⊢
((1st ‘𝑤) ↾ ∅) = ((2nd
‘𝑤) ↾
∅) |
105 | 33 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (𝐴 ∩ 𝐵) = ∅) |
106 | 105 | reseq2d 5880 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → ((1st
‘𝑤) ↾ (𝐴 ∩ 𝐵)) = ((1st ‘𝑤) ↾
∅)) |
107 | 105 | reseq2d 5880 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → ((2nd
‘𝑤) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑤) ↾
∅)) |
108 | 104, 106,
107 | 3eqtr4a 2805 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → ((1st
‘𝑤) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑤) ↾ (𝐴 ∩ 𝐵))) |
109 | | fresaunres1 6631 |
. . . . . . . . 9
⊢
(((1st ‘𝑤):𝐴⟶V ∧ (2nd ‘𝑤):𝐵⟶V ∧ ((1st
‘𝑤) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑤) ↾ (𝐴 ∩ 𝐵))) → (((1st ‘𝑤) ∪ (2nd
‘𝑤)) ↾ 𝐴) = (1st ‘𝑤)) |
110 | 94, 101, 108, 109 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (((1st
‘𝑤) ∪
(2nd ‘𝑤))
↾ 𝐴) =
(1st ‘𝑤)) |
111 | 110 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (1st
‘𝑤) =
(((1st ‘𝑤)
∪ (2nd ‘𝑤)) ↾ 𝐴)) |
112 | | fresaunres2 6630 |
. . . . . . . . 9
⊢
(((1st ‘𝑤):𝐴⟶V ∧ (2nd ‘𝑤):𝐵⟶V ∧ ((1st
‘𝑤) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑤) ↾ (𝐴 ∩ 𝐵))) → (((1st ‘𝑤) ∪ (2nd
‘𝑤)) ↾ 𝐵) = (2nd ‘𝑤)) |
113 | 94, 101, 108, 112 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (((1st
‘𝑤) ∪
(2nd ‘𝑤))
↾ 𝐵) =
(2nd ‘𝑤)) |
114 | 113 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (2nd
‘𝑤) =
(((1st ‘𝑤)
∪ (2nd ‘𝑤)) ↾ 𝐵)) |
115 | 111, 114 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → ((1st
‘𝑤) =
(((1st ‘𝑤)
∪ (2nd ‘𝑤)) ↾ 𝐴) ∧ (2nd ‘𝑤) = (((1st
‘𝑤) ∪
(2nd ‘𝑤))
↾ 𝐵))) |
116 | | reseq1 5874 |
. . . . . . . 8
⊢ (𝑧 = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) → (𝑧 ↾ 𝐴) = (((1st ‘𝑤) ∪ (2nd
‘𝑤)) ↾ 𝐴)) |
117 | 116 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑧 = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) →
((1st ‘𝑤)
= (𝑧 ↾ 𝐴) ↔ (1st
‘𝑤) =
(((1st ‘𝑤)
∪ (2nd ‘𝑤)) ↾ 𝐴))) |
118 | | reseq1 5874 |
. . . . . . . 8
⊢ (𝑧 = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) → (𝑧 ↾ 𝐵) = (((1st ‘𝑤) ∪ (2nd
‘𝑤)) ↾ 𝐵)) |
119 | 118 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑧 = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) →
((2nd ‘𝑤)
= (𝑧 ↾ 𝐵) ↔ (2nd
‘𝑤) =
(((1st ‘𝑤)
∪ (2nd ‘𝑤)) ↾ 𝐵))) |
120 | 117, 119 | anbi12d 630 |
. . . . . 6
⊢ (𝑧 = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) →
(((1st ‘𝑤)
= (𝑧 ↾ 𝐴) ∧ (2nd
‘𝑤) = (𝑧 ↾ 𝐵)) ↔ ((1st ‘𝑤) = (((1st
‘𝑤) ∪
(2nd ‘𝑤))
↾ 𝐴) ∧
(2nd ‘𝑤) =
(((1st ‘𝑤)
∪ (2nd ‘𝑤)) ↾ 𝐵)))) |
121 | 115, 120 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (𝑧 = ((1st ‘𝑤) ∪ (2nd ‘𝑤)) → ((1st
‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)))) |
122 | 89, 121 | impbid 211 |
. . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (((1st
‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)) ↔ 𝑧 = ((1st ‘𝑤) ∪ (2nd ‘𝑤)))) |
123 | 77, 122 | bitrd 278 |
. . 3
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (𝑤 = 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉 ↔ 𝑧 = ((1st ‘𝑤) ∪ (2nd ‘𝑤)))) |
124 | 8, 62, 75, 123 | f1ocnv2d 7500 |
. 2
⊢ (𝜑 → (𝐺:(𝑋 × 𝑌)–1-1-onto→∪ 𝐽
∧ ◡𝐺 = (𝑧 ∈ ∪ 𝐽 ↦ 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉))) |
125 | 124 | simprd 495 |
1
⊢ (𝜑 → ◡𝐺 = (𝑧 ∈ ∪ 𝐽 ↦ 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉)) |