| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ptunhmeo.g | . . . 4
⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥 ∪ 𝑦)) | 
| 2 |  | vex 3483 | . . . . . . 7
⊢ 𝑥 ∈ V | 
| 3 |  | vex 3483 | . . . . . . 7
⊢ 𝑦 ∈ V | 
| 4 | 2, 3 | op1std 8025 | . . . . . 6
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (1st ‘𝑤) = 𝑥) | 
| 5 | 2, 3 | op2ndd 8026 | . . . . . 6
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (2nd ‘𝑤) = 𝑦) | 
| 6 | 4, 5 | uneq12d 4168 | . . . . 5
⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((1st ‘𝑤) ∪ (2nd
‘𝑤)) = (𝑥 ∪ 𝑦)) | 
| 7 | 6 | mpompt 7548 | . . . 4
⊢ (𝑤 ∈ (𝑋 × 𝑌) ↦ ((1st ‘𝑤) ∪ (2nd
‘𝑤))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥 ∪ 𝑦)) | 
| 8 | 1, 7 | eqtr4i 2767 | . . 3
⊢ 𝐺 = (𝑤 ∈ (𝑋 × 𝑌) ↦ ((1st ‘𝑤) ∪ (2nd
‘𝑤))) | 
| 9 |  | xp1st 8047 | . . . . . . 7
⊢ (𝑤 ∈ (𝑋 × 𝑌) → (1st ‘𝑤) ∈ 𝑋) | 
| 10 | 9 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (1st ‘𝑤) ∈ 𝑋) | 
| 11 |  | ixpeq2 8952 | . . . . . . . . . 10
⊢
(∀𝑘 ∈
𝐴 ∪ ((𝐹
↾ 𝐴)‘𝑘) = ∪
(𝐹‘𝑘) → X𝑘 ∈ 𝐴 ∪ ((𝐹 ↾ 𝐴)‘𝑘) = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) | 
| 12 |  | fvres 6924 | . . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑘) = (𝐹‘𝑘)) | 
| 13 | 12 | unieqd 4919 | . . . . . . . . . 10
⊢ (𝑘 ∈ 𝐴 → ∪ ((𝐹 ↾ 𝐴)‘𝑘) = ∪ (𝐹‘𝑘)) | 
| 14 | 11, 13 | mprg 3066 | . . . . . . . . 9
⊢ X𝑘 ∈
𝐴 ∪ ((𝐹
↾ 𝐴)‘𝑘) = X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) | 
| 15 |  | ptunhmeo.c | . . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ 𝑉) | 
| 16 |  | ssun1 4177 | . . . . . . . . . . . 12
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | 
| 17 |  | ptunhmeo.u | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 = (𝐴 ∪ 𝐵)) | 
| 18 | 16, 17 | sseqtrrid 4026 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ 𝐶) | 
| 19 | 15, 18 | ssexd 5323 | . . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ V) | 
| 20 |  | ptunhmeo.f | . . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐶⟶Top) | 
| 21 | 20, 18 | fssresd 6774 | . . . . . . . . . 10
⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶Top) | 
| 22 |  | ptunhmeo.k | . . . . . . . . . . 11
⊢ 𝐾 =
(∏t‘(𝐹 ↾ 𝐴)) | 
| 23 | 22 | ptuni 23603 | . . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ (𝐹 ↾ 𝐴):𝐴⟶Top) → X𝑘 ∈
𝐴 ∪ ((𝐹
↾ 𝐴)‘𝑘) = ∪
𝐾) | 
| 24 | 19, 21, 23 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → X𝑘 ∈
𝐴 ∪ ((𝐹
↾ 𝐴)‘𝑘) = ∪
𝐾) | 
| 25 | 14, 24 | eqtr3id 2790 | . . . . . . . 8
⊢ (𝜑 → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐾) | 
| 26 |  | ptunhmeo.x | . . . . . . . 8
⊢ 𝑋 = ∪
𝐾 | 
| 27 | 25, 26 | eqtr4di 2794 | . . . . . . 7
⊢ (𝜑 → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) = 𝑋) | 
| 28 | 27 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) = 𝑋) | 
| 29 | 10, 28 | eleqtrrd 2843 | . . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (1st ‘𝑤) ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)) | 
| 30 |  | xp2nd 8048 | . . . . . . 7
⊢ (𝑤 ∈ (𝑋 × 𝑌) → (2nd ‘𝑤) ∈ 𝑌) | 
| 31 | 30 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑤) ∈ 𝑌) | 
| 32 | 17 | eqcomd 2742 | . . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∪ 𝐵) = 𝐶) | 
| 33 |  | ptunhmeo.i | . . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | 
| 34 |  | uneqdifeq 4492 | . . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝐶 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐴 ∪ 𝐵) = 𝐶 ↔ (𝐶 ∖ 𝐴) = 𝐵)) | 
| 35 | 18, 33, 34 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ∪ 𝐵) = 𝐶 ↔ (𝐶 ∖ 𝐴) = 𝐵)) | 
| 36 | 32, 35 | mpbid 232 | . . . . . . . . 9
⊢ (𝜑 → (𝐶 ∖ 𝐴) = 𝐵) | 
| 37 | 36 | ixpeq1d 8950 | . . . . . . . 8
⊢ (𝜑 → X𝑘 ∈
(𝐶 ∖ 𝐴)∪
(𝐹‘𝑘) = X𝑘 ∈ 𝐵 ∪ (𝐹‘𝑘)) | 
| 38 |  | ixpeq2 8952 | . . . . . . . . . . 11
⊢
(∀𝑘 ∈
𝐵 ∪ ((𝐹
↾ 𝐵)‘𝑘) = ∪
(𝐹‘𝑘) → X𝑘 ∈ 𝐵 ∪ ((𝐹 ↾ 𝐵)‘𝑘) = X𝑘 ∈ 𝐵 ∪ (𝐹‘𝑘)) | 
| 39 |  | fvres 6924 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑘) = (𝐹‘𝑘)) | 
| 40 | 39 | unieqd 4919 | . . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐵 → ∪ ((𝐹 ↾ 𝐵)‘𝑘) = ∪ (𝐹‘𝑘)) | 
| 41 | 38, 40 | mprg 3066 | . . . . . . . . . 10
⊢ X𝑘 ∈
𝐵 ∪ ((𝐹
↾ 𝐵)‘𝑘) = X𝑘 ∈
𝐵 ∪ (𝐹‘𝑘) | 
| 42 |  | ssun2 4178 | . . . . . . . . . . . . 13
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | 
| 43 | 42, 17 | sseqtrrid 4026 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ⊆ 𝐶) | 
| 44 | 15, 43 | ssexd 5323 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ V) | 
| 45 | 20, 43 | fssresd 6774 | . . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵⟶Top) | 
| 46 |  | ptunhmeo.l | . . . . . . . . . . . 12
⊢ 𝐿 =
(∏t‘(𝐹 ↾ 𝐵)) | 
| 47 | 46 | ptuni 23603 | . . . . . . . . . . 11
⊢ ((𝐵 ∈ V ∧ (𝐹 ↾ 𝐵):𝐵⟶Top) → X𝑘 ∈
𝐵 ∪ ((𝐹
↾ 𝐵)‘𝑘) = ∪
𝐿) | 
| 48 | 44, 45, 47 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 → X𝑘 ∈
𝐵 ∪ ((𝐹
↾ 𝐵)‘𝑘) = ∪
𝐿) | 
| 49 | 41, 48 | eqtr3id 2790 | . . . . . . . . 9
⊢ (𝜑 → X𝑘 ∈
𝐵 ∪ (𝐹‘𝑘) = ∪ 𝐿) | 
| 50 |  | ptunhmeo.y | . . . . . . . . 9
⊢ 𝑌 = ∪
𝐿 | 
| 51 | 49, 50 | eqtr4di 2794 | . . . . . . . 8
⊢ (𝜑 → X𝑘 ∈
𝐵 ∪ (𝐹‘𝑘) = 𝑌) | 
| 52 | 37, 51 | eqtrd 2776 | . . . . . . 7
⊢ (𝜑 → X𝑘 ∈
(𝐶 ∖ 𝐴)∪
(𝐹‘𝑘) = 𝑌) | 
| 53 | 52 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → X𝑘 ∈ (𝐶 ∖ 𝐴)∪ (𝐹‘𝑘) = 𝑌) | 
| 54 | 31, 53 | eleqtrrd 2843 | . . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑤) ∈ X𝑘 ∈
(𝐶 ∖ 𝐴)∪
(𝐹‘𝑘)) | 
| 55 | 18 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → 𝐴 ⊆ 𝐶) | 
| 56 |  | undifixp 8975 | . . . . 5
⊢
(((1st ‘𝑤) ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∧ (2nd ‘𝑤) ∈ X𝑘 ∈
(𝐶 ∖ 𝐴)∪
(𝐹‘𝑘) ∧ 𝐴 ⊆ 𝐶) → ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∈ X𝑘 ∈
𝐶 ∪ (𝐹‘𝑘)) | 
| 57 | 29, 54, 55, 56 | syl3anc 1372 | . . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∈ X𝑘 ∈
𝐶 ∪ (𝐹‘𝑘)) | 
| 58 |  | ptunhmeo.j | . . . . . . 7
⊢ 𝐽 =
(∏t‘𝐹) | 
| 59 | 58 | ptuni 23603 | . . . . . 6
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐹:𝐶⟶Top) → X𝑘 ∈
𝐶 ∪ (𝐹‘𝑘) = ∪ 𝐽) | 
| 60 | 15, 20, 59 | syl2anc 584 | . . . . 5
⊢ (𝜑 → X𝑘 ∈
𝐶 ∪ (𝐹‘𝑘) = ∪ 𝐽) | 
| 61 | 60 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → X𝑘 ∈ 𝐶 ∪ (𝐹‘𝑘) = ∪ 𝐽) | 
| 62 | 57, 61 | eleqtrd 2842 | . . 3
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∈ ∪ 𝐽) | 
| 63 | 18 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → 𝐴 ⊆ 𝐶) | 
| 64 | 60 | eleq2d 2826 | . . . . . . 7
⊢ (𝜑 → (𝑧 ∈ X𝑘 ∈ 𝐶 ∪ (𝐹‘𝑘) ↔ 𝑧 ∈ ∪ 𝐽)) | 
| 65 | 64 | biimpar 477 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → 𝑧 ∈ X𝑘 ∈ 𝐶 ∪ (𝐹‘𝑘)) | 
| 66 |  | resixp 8974 | . . . . . 6
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝑧 ∈ X𝑘 ∈ 𝐶 ∪ (𝐹‘𝑘)) → (𝑧 ↾ 𝐴) ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) | 
| 67 | 63, 65, 66 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → (𝑧 ↾ 𝐴) ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) | 
| 68 | 27 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) = 𝑋) | 
| 69 | 67, 68 | eleqtrd 2842 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → (𝑧 ↾ 𝐴) ∈ 𝑋) | 
| 70 | 43 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → 𝐵 ⊆ 𝐶) | 
| 71 |  | resixp 8974 | . . . . . 6
⊢ ((𝐵 ⊆ 𝐶 ∧ 𝑧 ∈ X𝑘 ∈ 𝐶 ∪ (𝐹‘𝑘)) → (𝑧 ↾ 𝐵) ∈ X𝑘 ∈ 𝐵 ∪ (𝐹‘𝑘)) | 
| 72 | 70, 65, 71 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → (𝑧 ↾ 𝐵) ∈ X𝑘 ∈ 𝐵 ∪ (𝐹‘𝑘)) | 
| 73 | 51 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → X𝑘 ∈
𝐵 ∪ (𝐹‘𝑘) = 𝑌) | 
| 74 | 72, 73 | eleqtrd 2842 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → (𝑧 ↾ 𝐵) ∈ 𝑌) | 
| 75 | 69, 74 | opelxpd 5723 | . . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐽) → 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉 ∈ (𝑋 × 𝑌)) | 
| 76 |  | eqop 8057 | . . . . 5
⊢ (𝑤 ∈ (𝑋 × 𝑌) → (𝑤 = 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉 ↔ ((1st ‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)))) | 
| 77 | 76 | ad2antrl 728 | . . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (𝑤 = 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉 ↔ ((1st ‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)))) | 
| 78 | 65 | adantrl 716 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → 𝑧 ∈ X𝑘 ∈ 𝐶 ∪ (𝐹‘𝑘)) | 
| 79 |  | ixpfn 8944 | . . . . . . . . 9
⊢ (𝑧 ∈ X𝑘 ∈
𝐶 ∪ (𝐹‘𝑘) → 𝑧 Fn 𝐶) | 
| 80 |  | fnresdm 6686 | . . . . . . . . 9
⊢ (𝑧 Fn 𝐶 → (𝑧 ↾ 𝐶) = 𝑧) | 
| 81 | 78, 79, 80 | 3syl 18 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (𝑧 ↾ 𝐶) = 𝑧) | 
| 82 | 17 | reseq2d 5996 | . . . . . . . . 9
⊢ (𝜑 → (𝑧 ↾ 𝐶) = (𝑧 ↾ (𝐴 ∪ 𝐵))) | 
| 83 | 82 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (𝑧 ↾ 𝐶) = (𝑧 ↾ (𝐴 ∪ 𝐵))) | 
| 84 | 81, 83 | eqtr3d 2778 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → 𝑧 = (𝑧 ↾ (𝐴 ∪ 𝐵))) | 
| 85 |  | resundi 6010 | . . . . . . 7
⊢ (𝑧 ↾ (𝐴 ∪ 𝐵)) = ((𝑧 ↾ 𝐴) ∪ (𝑧 ↾ 𝐵)) | 
| 86 | 84, 85 | eqtrdi 2792 | . . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → 𝑧 = ((𝑧 ↾ 𝐴) ∪ (𝑧 ↾ 𝐵))) | 
| 87 |  | uneq12 4162 | . . . . . . 7
⊢
(((1st ‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)) → ((1st ‘𝑤) ∪ (2nd
‘𝑤)) = ((𝑧 ↾ 𝐴) ∪ (𝑧 ↾ 𝐵))) | 
| 88 | 87 | eqeq2d 2747 | . . . . . 6
⊢
(((1st ‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)) → (𝑧 = ((1st ‘𝑤) ∪ (2nd ‘𝑤)) ↔ 𝑧 = ((𝑧 ↾ 𝐴) ∪ (𝑧 ↾ 𝐵)))) | 
| 89 | 86, 88 | syl5ibrcom 247 | . . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (((1st
‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)) → 𝑧 = ((1st ‘𝑤) ∪ (2nd ‘𝑤)))) | 
| 90 |  | ixpfn 8944 | . . . . . . . . . . . 12
⊢
((1st ‘𝑤) ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) → (1st ‘𝑤) Fn 𝐴) | 
| 91 | 29, 90 | syl 17 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (1st ‘𝑤) Fn 𝐴) | 
| 92 | 91 | adantrr 717 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (1st
‘𝑤) Fn 𝐴) | 
| 93 |  | dffn2 6737 | . . . . . . . . . 10
⊢
((1st ‘𝑤) Fn 𝐴 ↔ (1st ‘𝑤):𝐴⟶V) | 
| 94 | 92, 93 | sylib 218 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (1st
‘𝑤):𝐴⟶V) | 
| 95 | 51 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → X𝑘 ∈ 𝐵 ∪ (𝐹‘𝑘) = 𝑌) | 
| 96 | 31, 95 | eleqtrrd 2843 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑤) ∈ X𝑘 ∈
𝐵 ∪ (𝐹‘𝑘)) | 
| 97 |  | ixpfn 8944 | . . . . . . . . . . . 12
⊢
((2nd ‘𝑤) ∈ X𝑘 ∈ 𝐵 ∪ (𝐹‘𝑘) → (2nd ‘𝑤) Fn 𝐵) | 
| 98 | 96, 97 | syl 17 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑤) Fn 𝐵) | 
| 99 | 98 | adantrr 717 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (2nd
‘𝑤) Fn 𝐵) | 
| 100 |  | dffn2 6737 | . . . . . . . . . 10
⊢
((2nd ‘𝑤) Fn 𝐵 ↔ (2nd ‘𝑤):𝐵⟶V) | 
| 101 | 99, 100 | sylib 218 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (2nd
‘𝑤):𝐵⟶V) | 
| 102 |  | res0 6000 | . . . . . . . . . . 11
⊢
((1st ‘𝑤) ↾ ∅) = ∅ | 
| 103 |  | res0 6000 | . . . . . . . . . . 11
⊢
((2nd ‘𝑤) ↾ ∅) = ∅ | 
| 104 | 102, 103 | eqtr4i 2767 | . . . . . . . . . 10
⊢
((1st ‘𝑤) ↾ ∅) = ((2nd
‘𝑤) ↾
∅) | 
| 105 | 33 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (𝐴 ∩ 𝐵) = ∅) | 
| 106 | 105 | reseq2d 5996 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → ((1st
‘𝑤) ↾ (𝐴 ∩ 𝐵)) = ((1st ‘𝑤) ↾
∅)) | 
| 107 | 105 | reseq2d 5996 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → ((2nd
‘𝑤) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑤) ↾
∅)) | 
| 108 | 104, 106,
107 | 3eqtr4a 2802 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → ((1st
‘𝑤) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑤) ↾ (𝐴 ∩ 𝐵))) | 
| 109 |  | fresaunres1 6780 | . . . . . . . . 9
⊢
(((1st ‘𝑤):𝐴⟶V ∧ (2nd ‘𝑤):𝐵⟶V ∧ ((1st
‘𝑤) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑤) ↾ (𝐴 ∩ 𝐵))) → (((1st ‘𝑤) ∪ (2nd
‘𝑤)) ↾ 𝐴) = (1st ‘𝑤)) | 
| 110 | 94, 101, 108, 109 | syl3anc 1372 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (((1st
‘𝑤) ∪
(2nd ‘𝑤))
↾ 𝐴) =
(1st ‘𝑤)) | 
| 111 | 110 | eqcomd 2742 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (1st
‘𝑤) =
(((1st ‘𝑤)
∪ (2nd ‘𝑤)) ↾ 𝐴)) | 
| 112 |  | fresaunres2 6779 | . . . . . . . . 9
⊢
(((1st ‘𝑤):𝐴⟶V ∧ (2nd ‘𝑤):𝐵⟶V ∧ ((1st
‘𝑤) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑤) ↾ (𝐴 ∩ 𝐵))) → (((1st ‘𝑤) ∪ (2nd
‘𝑤)) ↾ 𝐵) = (2nd ‘𝑤)) | 
| 113 | 94, 101, 108, 112 | syl3anc 1372 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (((1st
‘𝑤) ∪
(2nd ‘𝑤))
↾ 𝐵) =
(2nd ‘𝑤)) | 
| 114 | 113 | eqcomd 2742 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (2nd
‘𝑤) =
(((1st ‘𝑤)
∪ (2nd ‘𝑤)) ↾ 𝐵)) | 
| 115 | 111, 114 | jca 511 | . . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → ((1st
‘𝑤) =
(((1st ‘𝑤)
∪ (2nd ‘𝑤)) ↾ 𝐴) ∧ (2nd ‘𝑤) = (((1st
‘𝑤) ∪
(2nd ‘𝑤))
↾ 𝐵))) | 
| 116 |  | reseq1 5990 | . . . . . . . 8
⊢ (𝑧 = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) → (𝑧 ↾ 𝐴) = (((1st ‘𝑤) ∪ (2nd
‘𝑤)) ↾ 𝐴)) | 
| 117 | 116 | eqeq2d 2747 | . . . . . . 7
⊢ (𝑧 = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) →
((1st ‘𝑤)
= (𝑧 ↾ 𝐴) ↔ (1st
‘𝑤) =
(((1st ‘𝑤)
∪ (2nd ‘𝑤)) ↾ 𝐴))) | 
| 118 |  | reseq1 5990 | . . . . . . . 8
⊢ (𝑧 = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) → (𝑧 ↾ 𝐵) = (((1st ‘𝑤) ∪ (2nd
‘𝑤)) ↾ 𝐵)) | 
| 119 | 118 | eqeq2d 2747 | . . . . . . 7
⊢ (𝑧 = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) →
((2nd ‘𝑤)
= (𝑧 ↾ 𝐵) ↔ (2nd
‘𝑤) =
(((1st ‘𝑤)
∪ (2nd ‘𝑤)) ↾ 𝐵))) | 
| 120 | 117, 119 | anbi12d 632 | . . . . . 6
⊢ (𝑧 = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) →
(((1st ‘𝑤)
= (𝑧 ↾ 𝐴) ∧ (2nd
‘𝑤) = (𝑧 ↾ 𝐵)) ↔ ((1st ‘𝑤) = (((1st
‘𝑤) ∪
(2nd ‘𝑤))
↾ 𝐴) ∧
(2nd ‘𝑤) =
(((1st ‘𝑤)
∪ (2nd ‘𝑤)) ↾ 𝐵)))) | 
| 121 | 115, 120 | syl5ibrcom 247 | . . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (𝑧 = ((1st ‘𝑤) ∪ (2nd ‘𝑤)) → ((1st
‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)))) | 
| 122 | 89, 121 | impbid 212 | . . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (((1st
‘𝑤) = (𝑧 ↾ 𝐴) ∧ (2nd ‘𝑤) = (𝑧 ↾ 𝐵)) ↔ 𝑧 = ((1st ‘𝑤) ∪ (2nd ‘𝑤)))) | 
| 123 | 77, 122 | bitrd 279 | . . 3
⊢ ((𝜑 ∧ (𝑤 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝐽)) → (𝑤 = 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉 ↔ 𝑧 = ((1st ‘𝑤) ∪ (2nd ‘𝑤)))) | 
| 124 | 8, 62, 75, 123 | f1ocnv2d 7687 | . 2
⊢ (𝜑 → (𝐺:(𝑋 × 𝑌)–1-1-onto→∪ 𝐽
∧ ◡𝐺 = (𝑧 ∈ ∪ 𝐽 ↦ 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉))) | 
| 125 | 124 | simprd 495 | 1
⊢ (𝜑 → ◡𝐺 = (𝑧 ∈ ∪ 𝐽 ↦ 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉)) |