| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ixpsnf1o.f | . 2
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) | 
| 2 |  | snex 5435 | . . . 4
⊢ {𝐼} ∈ V | 
| 3 |  | snex 5435 | . . . 4
⊢ {𝑥} ∈ V | 
| 4 | 2, 3 | xpex 7774 | . . 3
⊢ ({𝐼} × {𝑥}) ∈ V | 
| 5 | 4 | a1i 11 | . 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ({𝐼} × {𝑥}) ∈ V) | 
| 6 |  | vex 3483 | . . . . 5
⊢ 𝑎 ∈ V | 
| 7 | 6 | rnex 7933 | . . . 4
⊢ ran 𝑎 ∈ V | 
| 8 | 7 | uniex 7762 | . . 3
⊢ ∪ ran 𝑎 ∈ V | 
| 9 | 8 | a1i 11 | . 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 ∈ X𝑦 ∈ {𝐼}𝐴) → ∪ ran
𝑎 ∈
V) | 
| 10 |  | sneq 4635 | . . . . . 6
⊢ (𝑏 = 𝐼 → {𝑏} = {𝐼}) | 
| 11 | 10 | xpeq1d 5713 | . . . . 5
⊢ (𝑏 = 𝐼 → ({𝑏} × {𝑥}) = ({𝐼} × {𝑥})) | 
| 12 | 11 | eqeq2d 2747 | . . . 4
⊢ (𝑏 = 𝐼 → (𝑎 = ({𝑏} × {𝑥}) ↔ 𝑎 = ({𝐼} × {𝑥}))) | 
| 13 | 12 | anbi2d 630 | . . 3
⊢ (𝑏 = 𝐼 → ((𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝑏} × {𝑥})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝐼} × {𝑥})))) | 
| 14 |  | elixpsn 8978 | . . . . . 6
⊢ (𝑏 ∈ V → (𝑎 ∈ X𝑦 ∈
{𝑏}𝐴 ↔ ∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉})) | 
| 15 | 14 | elv 3484 | . . . . 5
⊢ (𝑎 ∈ X𝑦 ∈
{𝑏}𝐴 ↔ ∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉}) | 
| 16 | 10 | ixpeq1d 8950 | . . . . . 6
⊢ (𝑏 = 𝐼 → X𝑦 ∈ {𝑏}𝐴 = X𝑦 ∈ {𝐼}𝐴) | 
| 17 | 16 | eleq2d 2826 | . . . . 5
⊢ (𝑏 = 𝐼 → (𝑎 ∈ X𝑦 ∈ {𝑏}𝐴 ↔ 𝑎 ∈ X𝑦 ∈ {𝐼}𝐴)) | 
| 18 | 15, 17 | bitr3id 285 | . . . 4
⊢ (𝑏 = 𝐼 → (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ↔ 𝑎 ∈ X𝑦 ∈ {𝐼}𝐴)) | 
| 19 | 18 | anbi1d 631 | . . 3
⊢ (𝑏 = 𝐼 → ((∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎) ↔ (𝑎 ∈ X𝑦 ∈ {𝐼}𝐴 ∧ 𝑥 = ∪ ran 𝑎))) | 
| 20 |  | vex 3483 | . . . . . . 7
⊢ 𝑏 ∈ V | 
| 21 |  | vex 3483 | . . . . . . 7
⊢ 𝑥 ∈ V | 
| 22 | 20, 21 | xpsn 7160 | . . . . . 6
⊢ ({𝑏} × {𝑥}) = {〈𝑏, 𝑥〉} | 
| 23 | 22 | eqeq2i 2749 | . . . . 5
⊢ (𝑎 = ({𝑏} × {𝑥}) ↔ 𝑎 = {〈𝑏, 𝑥〉}) | 
| 24 | 23 | anbi2i 623 | . . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝑏} × {𝑥})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉})) | 
| 25 |  | eqid 2736 | . . . . . . . . 9
⊢
{〈𝑏, 𝑥〉} = {〈𝑏, 𝑥〉} | 
| 26 |  | opeq2 4873 | . . . . . . . . . . 11
⊢ (𝑐 = 𝑥 → 〈𝑏, 𝑐〉 = 〈𝑏, 𝑥〉) | 
| 27 | 26 | sneqd 4637 | . . . . . . . . . 10
⊢ (𝑐 = 𝑥 → {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}) | 
| 28 | 27 | rspceeqv 3644 | . . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑥〉} = {〈𝑏, 𝑥〉}) → ∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉}) | 
| 29 | 25, 28 | mpan2 691 | . . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → ∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉}) | 
| 30 | 20, 21 | op2nda 6247 | . . . . . . . . 9
⊢ ∪ ran {〈𝑏, 𝑥〉} = 𝑥 | 
| 31 | 30 | eqcomi 2745 | . . . . . . . 8
⊢ 𝑥 = ∪
ran {〈𝑏, 𝑥〉} | 
| 32 | 29, 31 | jctir 520 | . . . . . . 7
⊢ (𝑥 ∈ 𝐴 → (∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran
{〈𝑏, 𝑥〉})) | 
| 33 |  | eqeq1 2740 | . . . . . . . . 9
⊢ (𝑎 = {〈𝑏, 𝑥〉} → (𝑎 = {〈𝑏, 𝑐〉} ↔ {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉})) | 
| 34 | 33 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑎 = {〈𝑏, 𝑥〉} → (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ↔ ∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉})) | 
| 35 |  | rneq 5946 | . . . . . . . . . 10
⊢ (𝑎 = {〈𝑏, 𝑥〉} → ran 𝑎 = ran {〈𝑏, 𝑥〉}) | 
| 36 | 35 | unieqd 4919 | . . . . . . . . 9
⊢ (𝑎 = {〈𝑏, 𝑥〉} → ∪
ran 𝑎 = ∪ ran {〈𝑏, 𝑥〉}) | 
| 37 | 36 | eqeq2d 2747 | . . . . . . . 8
⊢ (𝑎 = {〈𝑏, 𝑥〉} → (𝑥 = ∪ ran 𝑎 ↔ 𝑥 = ∪ ran
{〈𝑏, 𝑥〉})) | 
| 38 | 34, 37 | anbi12d 632 | . . . . . . 7
⊢ (𝑎 = {〈𝑏, 𝑥〉} → ((∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎) ↔ (∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran
{〈𝑏, 𝑥〉}))) | 
| 39 | 32, 38 | syl5ibrcom 247 | . . . . . 6
⊢ (𝑥 ∈ 𝐴 → (𝑎 = {〈𝑏, 𝑥〉} → (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎))) | 
| 40 | 39 | imp 406 | . . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉}) → (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎)) | 
| 41 |  | vex 3483 | . . . . . . . . . . 11
⊢ 𝑐 ∈ V | 
| 42 | 20, 41 | op2nda 6247 | . . . . . . . . . 10
⊢ ∪ ran {〈𝑏, 𝑐〉} = 𝑐 | 
| 43 | 42 | eqeq2i 2749 | . . . . . . . . 9
⊢ (𝑥 = ∪
ran {〈𝑏, 𝑐〉} ↔ 𝑥 = 𝑐) | 
| 44 |  | eqidd 2737 | . . . . . . . . . . 11
⊢ (𝑐 ∈ 𝐴 → {〈𝑏, 𝑐〉} = {〈𝑏, 𝑐〉}) | 
| 45 | 44 | ancli 548 | . . . . . . . . . 10
⊢ (𝑐 ∈ 𝐴 → (𝑐 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑐〉})) | 
| 46 |  | eleq1w 2823 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑐 → (𝑥 ∈ 𝐴 ↔ 𝑐 ∈ 𝐴)) | 
| 47 |  | opeq2 4873 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑐 → 〈𝑏, 𝑥〉 = 〈𝑏, 𝑐〉) | 
| 48 | 47 | sneqd 4637 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑐 → {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉}) | 
| 49 | 48 | eqeq2d 2747 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑐 → ({〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉} ↔ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑐〉})) | 
| 50 | 46, 49 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑥 = 𝑐 → ((𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}) ↔ (𝑐 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑐〉}))) | 
| 51 | 45, 50 | syl5ibrcom 247 | . . . . . . . . 9
⊢ (𝑐 ∈ 𝐴 → (𝑥 = 𝑐 → (𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}))) | 
| 52 | 43, 51 | biimtrid 242 | . . . . . . . 8
⊢ (𝑐 ∈ 𝐴 → (𝑥 = ∪ ran
{〈𝑏, 𝑐〉} → (𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}))) | 
| 53 |  | rneq 5946 | . . . . . . . . . . 11
⊢ (𝑎 = {〈𝑏, 𝑐〉} → ran 𝑎 = ran {〈𝑏, 𝑐〉}) | 
| 54 | 53 | unieqd 4919 | . . . . . . . . . 10
⊢ (𝑎 = {〈𝑏, 𝑐〉} → ∪
ran 𝑎 = ∪ ran {〈𝑏, 𝑐〉}) | 
| 55 | 54 | eqeq2d 2747 | . . . . . . . . 9
⊢ (𝑎 = {〈𝑏, 𝑐〉} → (𝑥 = ∪ ran 𝑎 ↔ 𝑥 = ∪ ran
{〈𝑏, 𝑐〉})) | 
| 56 |  | eqeq1 2740 | . . . . . . . . . 10
⊢ (𝑎 = {〈𝑏, 𝑐〉} → (𝑎 = {〈𝑏, 𝑥〉} ↔ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉})) | 
| 57 | 56 | anbi2d 630 | . . . . . . . . 9
⊢ (𝑎 = {〈𝑏, 𝑐〉} → ((𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉}) ↔ (𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}))) | 
| 58 | 55, 57 | imbi12d 344 | . . . . . . . 8
⊢ (𝑎 = {〈𝑏, 𝑐〉} → ((𝑥 = ∪ ran 𝑎 → (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉})) ↔ (𝑥 = ∪ ran
{〈𝑏, 𝑐〉} → (𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉})))) | 
| 59 | 52, 58 | syl5ibrcom 247 | . . . . . . 7
⊢ (𝑐 ∈ 𝐴 → (𝑎 = {〈𝑏, 𝑐〉} → (𝑥 = ∪ ran 𝑎 → (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉})))) | 
| 60 | 59 | rexlimiv 3147 | . . . . . 6
⊢
(∃𝑐 ∈
𝐴 𝑎 = {〈𝑏, 𝑐〉} → (𝑥 = ∪ ran 𝑎 → (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉}))) | 
| 61 | 60 | imp 406 | . . . . 5
⊢
((∃𝑐 ∈
𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎) → (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉})) | 
| 62 | 40, 61 | impbii 209 | . . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉}) ↔ (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎)) | 
| 63 | 24, 62 | bitri 275 | . . 3
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝑏} × {𝑥})) ↔ (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎)) | 
| 64 | 13, 19, 63 | vtoclbg 3556 | . 2
⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝐼} × {𝑥})) ↔ (𝑎 ∈ X𝑦 ∈ {𝐼}𝐴 ∧ 𝑥 = ∪ ran 𝑎))) | 
| 65 | 1, 5, 9, 64 | f1od 7686 | 1
⊢ (𝐼 ∈ 𝑉 → 𝐹:𝐴–1-1-onto→X𝑦 ∈
{𝐼}𝐴) |