| Step | Hyp | Ref
| Expression |
| 1 | | ixpsnf1o.f |
. 2
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) |
| 2 | | snex 5411 |
. . . 4
⊢ {𝐼} ∈ V |
| 3 | | snex 5411 |
. . . 4
⊢ {𝑥} ∈ V |
| 4 | 2, 3 | xpex 7752 |
. . 3
⊢ ({𝐼} × {𝑥}) ∈ V |
| 5 | 4 | a1i 11 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ({𝐼} × {𝑥}) ∈ V) |
| 6 | | vex 3468 |
. . . . 5
⊢ 𝑎 ∈ V |
| 7 | 6 | rnex 7911 |
. . . 4
⊢ ran 𝑎 ∈ V |
| 8 | 7 | uniex 7740 |
. . 3
⊢ ∪ ran 𝑎 ∈ V |
| 9 | 8 | a1i 11 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 ∈ X𝑦 ∈ {𝐼}𝐴) → ∪ ran
𝑎 ∈
V) |
| 10 | | sneq 4616 |
. . . . . 6
⊢ (𝑏 = 𝐼 → {𝑏} = {𝐼}) |
| 11 | 10 | xpeq1d 5688 |
. . . . 5
⊢ (𝑏 = 𝐼 → ({𝑏} × {𝑥}) = ({𝐼} × {𝑥})) |
| 12 | 11 | eqeq2d 2747 |
. . . 4
⊢ (𝑏 = 𝐼 → (𝑎 = ({𝑏} × {𝑥}) ↔ 𝑎 = ({𝐼} × {𝑥}))) |
| 13 | 12 | anbi2d 630 |
. . 3
⊢ (𝑏 = 𝐼 → ((𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝑏} × {𝑥})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝐼} × {𝑥})))) |
| 14 | | elixpsn 8956 |
. . . . . 6
⊢ (𝑏 ∈ V → (𝑎 ∈ X𝑦 ∈
{𝑏}𝐴 ↔ ∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉})) |
| 15 | 14 | elv 3469 |
. . . . 5
⊢ (𝑎 ∈ X𝑦 ∈
{𝑏}𝐴 ↔ ∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉}) |
| 16 | 10 | ixpeq1d 8928 |
. . . . . 6
⊢ (𝑏 = 𝐼 → X𝑦 ∈ {𝑏}𝐴 = X𝑦 ∈ {𝐼}𝐴) |
| 17 | 16 | eleq2d 2821 |
. . . . 5
⊢ (𝑏 = 𝐼 → (𝑎 ∈ X𝑦 ∈ {𝑏}𝐴 ↔ 𝑎 ∈ X𝑦 ∈ {𝐼}𝐴)) |
| 18 | 15, 17 | bitr3id 285 |
. . . 4
⊢ (𝑏 = 𝐼 → (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ↔ 𝑎 ∈ X𝑦 ∈ {𝐼}𝐴)) |
| 19 | 18 | anbi1d 631 |
. . 3
⊢ (𝑏 = 𝐼 → ((∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎) ↔ (𝑎 ∈ X𝑦 ∈ {𝐼}𝐴 ∧ 𝑥 = ∪ ran 𝑎))) |
| 20 | | vex 3468 |
. . . . . . 7
⊢ 𝑏 ∈ V |
| 21 | | vex 3468 |
. . . . . . 7
⊢ 𝑥 ∈ V |
| 22 | 20, 21 | xpsn 7136 |
. . . . . 6
⊢ ({𝑏} × {𝑥}) = {〈𝑏, 𝑥〉} |
| 23 | 22 | eqeq2i 2749 |
. . . . 5
⊢ (𝑎 = ({𝑏} × {𝑥}) ↔ 𝑎 = {〈𝑏, 𝑥〉}) |
| 24 | 23 | anbi2i 623 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝑏} × {𝑥})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉})) |
| 25 | | eqid 2736 |
. . . . . . . . 9
⊢
{〈𝑏, 𝑥〉} = {〈𝑏, 𝑥〉} |
| 26 | | opeq2 4855 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑥 → 〈𝑏, 𝑐〉 = 〈𝑏, 𝑥〉) |
| 27 | 26 | sneqd 4618 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑥 → {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}) |
| 28 | 27 | rspceeqv 3629 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑥〉} = {〈𝑏, 𝑥〉}) → ∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉}) |
| 29 | 25, 28 | mpan2 691 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → ∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉}) |
| 30 | 20, 21 | op2nda 6222 |
. . . . . . . . 9
⊢ ∪ ran {〈𝑏, 𝑥〉} = 𝑥 |
| 31 | 30 | eqcomi 2745 |
. . . . . . . 8
⊢ 𝑥 = ∪
ran {〈𝑏, 𝑥〉} |
| 32 | 29, 31 | jctir 520 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → (∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran
{〈𝑏, 𝑥〉})) |
| 33 | | eqeq1 2740 |
. . . . . . . . 9
⊢ (𝑎 = {〈𝑏, 𝑥〉} → (𝑎 = {〈𝑏, 𝑐〉} ↔ {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉})) |
| 34 | 33 | rexbidv 3165 |
. . . . . . . 8
⊢ (𝑎 = {〈𝑏, 𝑥〉} → (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ↔ ∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉})) |
| 35 | | rneq 5921 |
. . . . . . . . . 10
⊢ (𝑎 = {〈𝑏, 𝑥〉} → ran 𝑎 = ran {〈𝑏, 𝑥〉}) |
| 36 | 35 | unieqd 4901 |
. . . . . . . . 9
⊢ (𝑎 = {〈𝑏, 𝑥〉} → ∪
ran 𝑎 = ∪ ran {〈𝑏, 𝑥〉}) |
| 37 | 36 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝑎 = {〈𝑏, 𝑥〉} → (𝑥 = ∪ ran 𝑎 ↔ 𝑥 = ∪ ran
{〈𝑏, 𝑥〉})) |
| 38 | 34, 37 | anbi12d 632 |
. . . . . . 7
⊢ (𝑎 = {〈𝑏, 𝑥〉} → ((∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎) ↔ (∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran
{〈𝑏, 𝑥〉}))) |
| 39 | 32, 38 | syl5ibrcom 247 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → (𝑎 = {〈𝑏, 𝑥〉} → (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎))) |
| 40 | 39 | imp 406 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉}) → (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎)) |
| 41 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑐 ∈ V |
| 42 | 20, 41 | op2nda 6222 |
. . . . . . . . . 10
⊢ ∪ ran {〈𝑏, 𝑐〉} = 𝑐 |
| 43 | 42 | eqeq2i 2749 |
. . . . . . . . 9
⊢ (𝑥 = ∪
ran {〈𝑏, 𝑐〉} ↔ 𝑥 = 𝑐) |
| 44 | | eqidd 2737 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝐴 → {〈𝑏, 𝑐〉} = {〈𝑏, 𝑐〉}) |
| 45 | 44 | ancli 548 |
. . . . . . . . . 10
⊢ (𝑐 ∈ 𝐴 → (𝑐 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑐〉})) |
| 46 | | eleq1w 2818 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑐 → (𝑥 ∈ 𝐴 ↔ 𝑐 ∈ 𝐴)) |
| 47 | | opeq2 4855 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑐 → 〈𝑏, 𝑥〉 = 〈𝑏, 𝑐〉) |
| 48 | 47 | sneqd 4618 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑐 → {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉}) |
| 49 | 48 | eqeq2d 2747 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑐 → ({〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉} ↔ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑐〉})) |
| 50 | 46, 49 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑐 → ((𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}) ↔ (𝑐 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑐〉}))) |
| 51 | 45, 50 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝐴 → (𝑥 = 𝑐 → (𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}))) |
| 52 | 43, 51 | biimtrid 242 |
. . . . . . . 8
⊢ (𝑐 ∈ 𝐴 → (𝑥 = ∪ ran
{〈𝑏, 𝑐〉} → (𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}))) |
| 53 | | rneq 5921 |
. . . . . . . . . . 11
⊢ (𝑎 = {〈𝑏, 𝑐〉} → ran 𝑎 = ran {〈𝑏, 𝑐〉}) |
| 54 | 53 | unieqd 4901 |
. . . . . . . . . 10
⊢ (𝑎 = {〈𝑏, 𝑐〉} → ∪
ran 𝑎 = ∪ ran {〈𝑏, 𝑐〉}) |
| 55 | 54 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑎 = {〈𝑏, 𝑐〉} → (𝑥 = ∪ ran 𝑎 ↔ 𝑥 = ∪ ran
{〈𝑏, 𝑐〉})) |
| 56 | | eqeq1 2740 |
. . . . . . . . . 10
⊢ (𝑎 = {〈𝑏, 𝑐〉} → (𝑎 = {〈𝑏, 𝑥〉} ↔ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉})) |
| 57 | 56 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑎 = {〈𝑏, 𝑐〉} → ((𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉}) ↔ (𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}))) |
| 58 | 55, 57 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑎 = {〈𝑏, 𝑐〉} → ((𝑥 = ∪ ran 𝑎 → (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉})) ↔ (𝑥 = ∪ ran
{〈𝑏, 𝑐〉} → (𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉})))) |
| 59 | 52, 58 | syl5ibrcom 247 |
. . . . . . 7
⊢ (𝑐 ∈ 𝐴 → (𝑎 = {〈𝑏, 𝑐〉} → (𝑥 = ∪ ran 𝑎 → (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉})))) |
| 60 | 59 | rexlimiv 3135 |
. . . . . 6
⊢
(∃𝑐 ∈
𝐴 𝑎 = {〈𝑏, 𝑐〉} → (𝑥 = ∪ ran 𝑎 → (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉}))) |
| 61 | 60 | imp 406 |
. . . . 5
⊢
((∃𝑐 ∈
𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎) → (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉})) |
| 62 | 40, 61 | impbii 209 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉}) ↔ (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎)) |
| 63 | 24, 62 | bitri 275 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝑏} × {𝑥})) ↔ (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎)) |
| 64 | 13, 19, 63 | vtoclbg 3541 |
. 2
⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝐼} × {𝑥})) ↔ (𝑎 ∈ X𝑦 ∈ {𝐼}𝐴 ∧ 𝑥 = ∪ ran 𝑎))) |
| 65 | 1, 5, 9, 64 | f1od 7664 |
1
⊢ (𝐼 ∈ 𝑉 → 𝐹:𝐴–1-1-onto→X𝑦 ∈
{𝐼}𝐴) |