MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpsnf1o Structured version   Visualization version   GIF version

Theorem ixpsnf1o 8726
Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
Assertion
Ref Expression
ixpsnf1o (𝐼𝑉𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
Distinct variable groups:   𝑥,𝐼,𝑦   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦   𝑦,𝐹
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem ixpsnf1o
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . 2 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
2 snex 5354 . . . 4 {𝐼} ∈ V
3 snex 5354 . . . 4 {𝑥} ∈ V
42, 3xpex 7603 . . 3 ({𝐼} × {𝑥}) ∈ V
54a1i 11 . 2 ((𝐼𝑉𝑥𝐴) → ({𝐼} × {𝑥}) ∈ V)
6 vex 3436 . . . . 5 𝑎 ∈ V
76rnex 7759 . . . 4 ran 𝑎 ∈ V
87uniex 7594 . . 3 ran 𝑎 ∈ V
98a1i 11 . 2 ((𝐼𝑉𝑎X𝑦 ∈ {𝐼}𝐴) → ran 𝑎 ∈ V)
10 sneq 4571 . . . . . 6 (𝑏 = 𝐼 → {𝑏} = {𝐼})
1110xpeq1d 5618 . . . . 5 (𝑏 = 𝐼 → ({𝑏} × {𝑥}) = ({𝐼} × {𝑥}))
1211eqeq2d 2749 . . . 4 (𝑏 = 𝐼 → (𝑎 = ({𝑏} × {𝑥}) ↔ 𝑎 = ({𝐼} × {𝑥})))
1312anbi2d 629 . . 3 (𝑏 = 𝐼 → ((𝑥𝐴𝑎 = ({𝑏} × {𝑥})) ↔ (𝑥𝐴𝑎 = ({𝐼} × {𝑥}))))
14 elixpsn 8725 . . . . . 6 (𝑏 ∈ V → (𝑎X𝑦 ∈ {𝑏}𝐴 ↔ ∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩}))
1514elv 3438 . . . . 5 (𝑎X𝑦 ∈ {𝑏}𝐴 ↔ ∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩})
1610ixpeq1d 8697 . . . . . 6 (𝑏 = 𝐼X𝑦 ∈ {𝑏}𝐴 = X𝑦 ∈ {𝐼}𝐴)
1716eleq2d 2824 . . . . 5 (𝑏 = 𝐼 → (𝑎X𝑦 ∈ {𝑏}𝐴𝑎X𝑦 ∈ {𝐼}𝐴))
1815, 17bitr3id 285 . . . 4 (𝑏 = 𝐼 → (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ↔ 𝑎X𝑦 ∈ {𝐼}𝐴))
1918anbi1d 630 . . 3 (𝑏 = 𝐼 → ((∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎) ↔ (𝑎X𝑦 ∈ {𝐼}𝐴𝑥 = ran 𝑎)))
20 vex 3436 . . . . . . 7 𝑏 ∈ V
21 vex 3436 . . . . . . 7 𝑥 ∈ V
2220, 21xpsn 7013 . . . . . 6 ({𝑏} × {𝑥}) = {⟨𝑏, 𝑥⟩}
2322eqeq2i 2751 . . . . 5 (𝑎 = ({𝑏} × {𝑥}) ↔ 𝑎 = {⟨𝑏, 𝑥⟩})
2423anbi2i 623 . . . 4 ((𝑥𝐴𝑎 = ({𝑏} × {𝑥})) ↔ (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}))
25 eqid 2738 . . . . . . . . 9 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑥⟩}
26 opeq2 4805 . . . . . . . . . . 11 (𝑐 = 𝑥 → ⟨𝑏, 𝑐⟩ = ⟨𝑏, 𝑥⟩)
2726sneqd 4573 . . . . . . . . . 10 (𝑐 = 𝑥 → {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩})
2827rspceeqv 3575 . . . . . . . . 9 ((𝑥𝐴 ∧ {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑥⟩}) → ∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩})
2925, 28mpan2 688 . . . . . . . 8 (𝑥𝐴 → ∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩})
3020, 21op2nda 6131 . . . . . . . . 9 ran {⟨𝑏, 𝑥⟩} = 𝑥
3130eqcomi 2747 . . . . . . . 8 𝑥 = ran {⟨𝑏, 𝑥⟩}
3229, 31jctir 521 . . . . . . 7 (𝑥𝐴 → (∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran {⟨𝑏, 𝑥⟩}))
33 eqeq1 2742 . . . . . . . . 9 (𝑎 = {⟨𝑏, 𝑥⟩} → (𝑎 = {⟨𝑏, 𝑐⟩} ↔ {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩}))
3433rexbidv 3226 . . . . . . . 8 (𝑎 = {⟨𝑏, 𝑥⟩} → (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ↔ ∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩}))
35 rneq 5845 . . . . . . . . . 10 (𝑎 = {⟨𝑏, 𝑥⟩} → ran 𝑎 = ran {⟨𝑏, 𝑥⟩})
3635unieqd 4853 . . . . . . . . 9 (𝑎 = {⟨𝑏, 𝑥⟩} → ran 𝑎 = ran {⟨𝑏, 𝑥⟩})
3736eqeq2d 2749 . . . . . . . 8 (𝑎 = {⟨𝑏, 𝑥⟩} → (𝑥 = ran 𝑎𝑥 = ran {⟨𝑏, 𝑥⟩}))
3834, 37anbi12d 631 . . . . . . 7 (𝑎 = {⟨𝑏, 𝑥⟩} → ((∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎) ↔ (∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran {⟨𝑏, 𝑥⟩})))
3932, 38syl5ibrcom 246 . . . . . 6 (𝑥𝐴 → (𝑎 = {⟨𝑏, 𝑥⟩} → (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎)))
4039imp 407 . . . . 5 ((𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}) → (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎))
41 vex 3436 . . . . . . . . . . 11 𝑐 ∈ V
4220, 41op2nda 6131 . . . . . . . . . 10 ran {⟨𝑏, 𝑐⟩} = 𝑐
4342eqeq2i 2751 . . . . . . . . 9 (𝑥 = ran {⟨𝑏, 𝑐⟩} ↔ 𝑥 = 𝑐)
44 eqidd 2739 . . . . . . . . . . 11 (𝑐𝐴 → {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑐⟩})
4544ancli 549 . . . . . . . . . 10 (𝑐𝐴 → (𝑐𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑐⟩}))
46 eleq1w 2821 . . . . . . . . . . 11 (𝑥 = 𝑐 → (𝑥𝐴𝑐𝐴))
47 opeq2 4805 . . . . . . . . . . . . 13 (𝑥 = 𝑐 → ⟨𝑏, 𝑥⟩ = ⟨𝑏, 𝑐⟩)
4847sneqd 4573 . . . . . . . . . . . 12 (𝑥 = 𝑐 → {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩})
4948eqeq2d 2749 . . . . . . . . . . 11 (𝑥 = 𝑐 → ({⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩} ↔ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑐⟩}))
5046, 49anbi12d 631 . . . . . . . . . 10 (𝑥 = 𝑐 → ((𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩}) ↔ (𝑐𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑐⟩})))
5145, 50syl5ibrcom 246 . . . . . . . . 9 (𝑐𝐴 → (𝑥 = 𝑐 → (𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩})))
5243, 51syl5bi 241 . . . . . . . 8 (𝑐𝐴 → (𝑥 = ran {⟨𝑏, 𝑐⟩} → (𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩})))
53 rneq 5845 . . . . . . . . . . 11 (𝑎 = {⟨𝑏, 𝑐⟩} → ran 𝑎 = ran {⟨𝑏, 𝑐⟩})
5453unieqd 4853 . . . . . . . . . 10 (𝑎 = {⟨𝑏, 𝑐⟩} → ran 𝑎 = ran {⟨𝑏, 𝑐⟩})
5554eqeq2d 2749 . . . . . . . . 9 (𝑎 = {⟨𝑏, 𝑐⟩} → (𝑥 = ran 𝑎𝑥 = ran {⟨𝑏, 𝑐⟩}))
56 eqeq1 2742 . . . . . . . . . 10 (𝑎 = {⟨𝑏, 𝑐⟩} → (𝑎 = {⟨𝑏, 𝑥⟩} ↔ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩}))
5756anbi2d 629 . . . . . . . . 9 (𝑎 = {⟨𝑏, 𝑐⟩} → ((𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}) ↔ (𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩})))
5855, 57imbi12d 345 . . . . . . . 8 (𝑎 = {⟨𝑏, 𝑐⟩} → ((𝑥 = ran 𝑎 → (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩})) ↔ (𝑥 = ran {⟨𝑏, 𝑐⟩} → (𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩}))))
5952, 58syl5ibrcom 246 . . . . . . 7 (𝑐𝐴 → (𝑎 = {⟨𝑏, 𝑐⟩} → (𝑥 = ran 𝑎 → (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}))))
6059rexlimiv 3209 . . . . . 6 (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} → (𝑥 = ran 𝑎 → (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩})))
6160imp 407 . . . . 5 ((∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎) → (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}))
6240, 61impbii 208 . . . 4 ((𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}) ↔ (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎))
6324, 62bitri 274 . . 3 ((𝑥𝐴𝑎 = ({𝑏} × {𝑥})) ↔ (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎))
6413, 19, 63vtoclbg 3507 . 2 (𝐼𝑉 → ((𝑥𝐴𝑎 = ({𝐼} × {𝑥})) ↔ (𝑎X𝑦 ∈ {𝐼}𝐴𝑥 = ran 𝑎)))
651, 5, 9, 64f1od 7521 1 (𝐼𝑉𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  {csn 4561  cop 4567   cuni 4839  cmpt 5157   × cxp 5587  ran crn 5590  1-1-ontowf1o 6432  Xcixp 8685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ixp 8686
This theorem is referenced by:  mapsnf1o  8727
  Copyright terms: Public domain W3C validator