MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptunhmeo Structured version   Visualization version   GIF version

Theorem ptunhmeo 23803
Description: Define a homeomorphism from a binary product of indexed product topologies to an indexed product topology on the union of the index sets. This is the topological analogue of (𝐴𝐵) · (𝐴𝐶) = 𝐴↑(𝐵 + 𝐶). (Contributed by Mario Carneiro, 8-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
ptunhmeo.x 𝑋 = 𝐾
ptunhmeo.y 𝑌 = 𝐿
ptunhmeo.j 𝐽 = (∏t𝐹)
ptunhmeo.k 𝐾 = (∏t‘(𝐹𝐴))
ptunhmeo.l 𝐿 = (∏t‘(𝐹𝐵))
ptunhmeo.g 𝐺 = (𝑥𝑋, 𝑦𝑌 ↦ (𝑥𝑦))
ptunhmeo.c (𝜑𝐶𝑉)
ptunhmeo.f (𝜑𝐹:𝐶⟶Top)
ptunhmeo.u (𝜑𝐶 = (𝐴𝐵))
ptunhmeo.i (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
ptunhmeo (𝜑𝐺 ∈ ((𝐾 ×t 𝐿)Homeo𝐽))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ptunhmeo
Dummy variables 𝑓 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptunhmeo.g . . . . 5 𝐺 = (𝑥𝑋, 𝑦𝑌 ↦ (𝑥𝑦))
2 vex 3466 . . . . . . . 8 𝑥 ∈ V
3 vex 3466 . . . . . . . 8 𝑦 ∈ V
42, 3op1std 8013 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
52, 3op2ndd 8014 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
64, 5uneq12d 4164 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) ∪ (2nd𝑧)) = (𝑥𝑦))
76mpompt 7539 . . . . 5 (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st𝑧) ∪ (2nd𝑧))) = (𝑥𝑋, 𝑦𝑌 ↦ (𝑥𝑦))
81, 7eqtr4i 2757 . . . 4 𝐺 = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st𝑧) ∪ (2nd𝑧)))
9 xp1st 8035 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → (1st𝑧) ∈ 𝑋)
109adantl 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (1st𝑧) ∈ 𝑋)
11 ixpeq2 8940 . . . . . . . . . . . . 13 (∀𝑛𝐴 ((𝐹𝐴)‘𝑛) = (𝐹𝑛) → X𝑛𝐴 ((𝐹𝐴)‘𝑛) = X𝑛𝐴 (𝐹𝑛))
12 fvres 6920 . . . . . . . . . . . . . 14 (𝑛𝐴 → ((𝐹𝐴)‘𝑛) = (𝐹𝑛))
1312unieqd 4926 . . . . . . . . . . . . 13 (𝑛𝐴 ((𝐹𝐴)‘𝑛) = (𝐹𝑛))
1411, 13mprg 3057 . . . . . . . . . . . 12 X𝑛𝐴 ((𝐹𝐴)‘𝑛) = X𝑛𝐴 (𝐹𝑛)
15 ptunhmeo.c . . . . . . . . . . . . . 14 (𝜑𝐶𝑉)
16 ssun1 4173 . . . . . . . . . . . . . . 15 𝐴 ⊆ (𝐴𝐵)
17 ptunhmeo.u . . . . . . . . . . . . . . 15 (𝜑𝐶 = (𝐴𝐵))
1816, 17sseqtrrid 4033 . . . . . . . . . . . . . 14 (𝜑𝐴𝐶)
1915, 18ssexd 5329 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ V)
20 ptunhmeo.f . . . . . . . . . . . . . 14 (𝜑𝐹:𝐶⟶Top)
2120, 18fssresd 6769 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐴):𝐴⟶Top)
22 ptunhmeo.k . . . . . . . . . . . . . 14 𝐾 = (∏t‘(𝐹𝐴))
2322ptuni 23589 . . . . . . . . . . . . 13 ((𝐴 ∈ V ∧ (𝐹𝐴):𝐴⟶Top) → X𝑛𝐴 ((𝐹𝐴)‘𝑛) = 𝐾)
2419, 21, 23syl2anc 582 . . . . . . . . . . . 12 (𝜑X𝑛𝐴 ((𝐹𝐴)‘𝑛) = 𝐾)
2514, 24eqtr3id 2780 . . . . . . . . . . 11 (𝜑X𝑛𝐴 (𝐹𝑛) = 𝐾)
26 ptunhmeo.x . . . . . . . . . . 11 𝑋 = 𝐾
2725, 26eqtr4di 2784 . . . . . . . . . 10 (𝜑X𝑛𝐴 (𝐹𝑛) = 𝑋)
2827adantr 479 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
2910, 28eleqtrrd 2829 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (1st𝑧) ∈ X𝑛𝐴 (𝐹𝑛))
30 xp2nd 8036 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → (2nd𝑧) ∈ 𝑌)
3130adantl 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (2nd𝑧) ∈ 𝑌)
3217eqcomd 2732 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = 𝐶)
33 ptunhmeo.i . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐵) = ∅)
34 uneqdifeq 4497 . . . . . . . . . . . . . 14 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))
3518, 33, 34syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))
3632, 35mpbid 231 . . . . . . . . . . . 12 (𝜑 → (𝐶𝐴) = 𝐵)
3736ixpeq1d 8938 . . . . . . . . . . 11 (𝜑X𝑛 ∈ (𝐶𝐴) (𝐹𝑛) = X𝑛𝐵 (𝐹𝑛))
38 ixpeq2 8940 . . . . . . . . . . . . . 14 (∀𝑛𝐵 ((𝐹𝐵)‘𝑛) = (𝐹𝑛) → X𝑛𝐵 ((𝐹𝐵)‘𝑛) = X𝑛𝐵 (𝐹𝑛))
39 fvres 6920 . . . . . . . . . . . . . . 15 (𝑛𝐵 → ((𝐹𝐵)‘𝑛) = (𝐹𝑛))
4039unieqd 4926 . . . . . . . . . . . . . 14 (𝑛𝐵 ((𝐹𝐵)‘𝑛) = (𝐹𝑛))
4138, 40mprg 3057 . . . . . . . . . . . . 13 X𝑛𝐵 ((𝐹𝐵)‘𝑛) = X𝑛𝐵 (𝐹𝑛)
42 ssun2 4174 . . . . . . . . . . . . . . . 16 𝐵 ⊆ (𝐴𝐵)
4342, 17sseqtrrid 4033 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐶)
4415, 43ssexd 5329 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ V)
4520, 43fssresd 6769 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐵):𝐵⟶Top)
46 ptunhmeo.l . . . . . . . . . . . . . . 15 𝐿 = (∏t‘(𝐹𝐵))
4746ptuni 23589 . . . . . . . . . . . . . 14 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → X𝑛𝐵 ((𝐹𝐵)‘𝑛) = 𝐿)
4844, 45, 47syl2anc 582 . . . . . . . . . . . . 13 (𝜑X𝑛𝐵 ((𝐹𝐵)‘𝑛) = 𝐿)
4941, 48eqtr3id 2780 . . . . . . . . . . . 12 (𝜑X𝑛𝐵 (𝐹𝑛) = 𝐿)
50 ptunhmeo.y . . . . . . . . . . . 12 𝑌 = 𝐿
5149, 50eqtr4di 2784 . . . . . . . . . . 11 (𝜑X𝑛𝐵 (𝐹𝑛) = 𝑌)
5237, 51eqtrd 2766 . . . . . . . . . 10 (𝜑X𝑛 ∈ (𝐶𝐴) (𝐹𝑛) = 𝑌)
5352adantr 479 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → X𝑛 ∈ (𝐶𝐴) (𝐹𝑛) = 𝑌)
5431, 53eleqtrrd 2829 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (2nd𝑧) ∈ X𝑛 ∈ (𝐶𝐴) (𝐹𝑛))
5518adantr 479 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → 𝐴𝐶)
56 undifixp 8963 . . . . . . . 8 (((1st𝑧) ∈ X𝑛𝐴 (𝐹𝑛) ∧ (2nd𝑧) ∈ X𝑛 ∈ (𝐶𝐴) (𝐹𝑛) ∧ 𝐴𝐶) → ((1st𝑧) ∪ (2nd𝑧)) ∈ X𝑛𝐶 (𝐹𝑛))
5729, 54, 55, 56syl3anc 1368 . . . . . . 7 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → ((1st𝑧) ∪ (2nd𝑧)) ∈ X𝑛𝐶 (𝐹𝑛))
58 ixpfn 8932 . . . . . . 7 (((1st𝑧) ∪ (2nd𝑧)) ∈ X𝑛𝐶 (𝐹𝑛) → ((1st𝑧) ∪ (2nd𝑧)) Fn 𝐶)
5957, 58syl 17 . . . . . 6 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → ((1st𝑧) ∪ (2nd𝑧)) Fn 𝐶)
60 dffn5 6961 . . . . . 6 (((1st𝑧) ∪ (2nd𝑧)) Fn 𝐶 ↔ ((1st𝑧) ∪ (2nd𝑧)) = (𝑘𝐶 ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)))
6159, 60sylib 217 . . . . 5 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → ((1st𝑧) ∪ (2nd𝑧)) = (𝑘𝐶 ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)))
6261mpteq2dva 5253 . . . 4 (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st𝑧) ∪ (2nd𝑧))) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (𝑘𝐶 ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘))))
638, 62eqtrid 2778 . . 3 (𝜑𝐺 = (𝑧 ∈ (𝑋 × 𝑌) ↦ (𝑘𝐶 ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘))))
64 ptunhmeo.j . . . 4 𝐽 = (∏t𝐹)
65 pttop 23577 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝐹𝐴):𝐴⟶Top) → (∏t‘(𝐹𝐴)) ∈ Top)
6619, 21, 65syl2anc 582 . . . . . . 7 (𝜑 → (∏t‘(𝐹𝐴)) ∈ Top)
6722, 66eqeltrid 2830 . . . . . 6 (𝜑𝐾 ∈ Top)
6826toptopon 22910 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑋))
6967, 68sylib 217 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑋))
70 pttop 23577 . . . . . . . 8 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → (∏t‘(𝐹𝐵)) ∈ Top)
7144, 45, 70syl2anc 582 . . . . . . 7 (𝜑 → (∏t‘(𝐹𝐵)) ∈ Top)
7246, 71eqeltrid 2830 . . . . . 6 (𝜑𝐿 ∈ Top)
7350toptopon 22910 . . . . . 6 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘𝑌))
7472, 73sylib 217 . . . . 5 (𝜑𝐿 ∈ (TopOn‘𝑌))
75 txtopon 23586 . . . . 5 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
7669, 74, 75syl2anc 582 . . . 4 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
7717eleq2d 2812 . . . . . . 7 (𝜑 → (𝑘𝐶𝑘 ∈ (𝐴𝐵)))
7877biimpa 475 . . . . . 6 ((𝜑𝑘𝐶) → 𝑘 ∈ (𝐴𝐵))
79 elun 4148 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
8078, 79sylib 217 . . . . 5 ((𝜑𝑘𝐶) → (𝑘𝐴𝑘𝐵))
81 ixpfn 8932 . . . . . . . . . . 11 ((1st𝑧) ∈ X𝑛𝐴 (𝐹𝑛) → (1st𝑧) Fn 𝐴)
8229, 81syl 17 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (1st𝑧) Fn 𝐴)
8382adantlr 713 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (1st𝑧) Fn 𝐴)
8451adantr 479 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → X𝑛𝐵 (𝐹𝑛) = 𝑌)
8531, 84eleqtrrd 2829 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (2nd𝑧) ∈ X𝑛𝐵 (𝐹𝑛))
86 ixpfn 8932 . . . . . . . . . . 11 ((2nd𝑧) ∈ X𝑛𝐵 (𝐹𝑛) → (2nd𝑧) Fn 𝐵)
8785, 86syl 17 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (2nd𝑧) Fn 𝐵)
8887adantlr 713 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (2nd𝑧) Fn 𝐵)
8933ad2antrr 724 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (𝐴𝐵) = ∅)
90 simplr 767 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → 𝑘𝐴)
91 fvun1 6993 . . . . . . . . 9 (((1st𝑧) Fn 𝐴 ∧ (2nd𝑧) Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑘𝐴)) → (((1st𝑧) ∪ (2nd𝑧))‘𝑘) = ((1st𝑧)‘𝑘))
9283, 88, 89, 90, 91syl112anc 1371 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (((1st𝑧) ∪ (2nd𝑧))‘𝑘) = ((1st𝑧)‘𝑘))
9392mpteq2dva 5253 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st𝑧)‘𝑘)))
9476adantr 479 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
954mpompt 7539 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st𝑧)) = (𝑥𝑋, 𝑦𝑌𝑥)
9669adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘𝑋))
9774adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐿 ∈ (TopOn‘𝑌))
9896, 97cnmpt1st 23663 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐾 ×t 𝐿) Cn 𝐾))
9995, 98eqeltrid 2830 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st𝑧)) ∈ ((𝐾 ×t 𝐿) Cn 𝐾))
10019adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐴 ∈ V)
10121adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝐴):𝐴⟶Top)
102 simpr 483 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝑘𝐴)
10326, 22ptpjcn 23606 . . . . . . . . . 10 ((𝐴 ∈ V ∧ (𝐹𝐴):𝐴⟶Top ∧ 𝑘𝐴) → (𝑓𝑋 ↦ (𝑓𝑘)) ∈ (𝐾 Cn ((𝐹𝐴)‘𝑘)))
104100, 101, 102, 103syl3anc 1368 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝑓𝑋 ↦ (𝑓𝑘)) ∈ (𝐾 Cn ((𝐹𝐴)‘𝑘)))
105 fvres 6920 . . . . . . . . . . 11 (𝑘𝐴 → ((𝐹𝐴)‘𝑘) = (𝐹𝑘))
106105adantl 480 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((𝐹𝐴)‘𝑘) = (𝐹𝑘))
107106oveq2d 7440 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐾 Cn ((𝐹𝐴)‘𝑘)) = (𝐾 Cn (𝐹𝑘)))
108104, 107eleqtrd 2828 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝑓𝑋 ↦ (𝑓𝑘)) ∈ (𝐾 Cn (𝐹𝑘)))
109 fveq1 6900 . . . . . . . 8 (𝑓 = (1st𝑧) → (𝑓𝑘) = ((1st𝑧)‘𝑘))
11094, 99, 96, 108, 109cnmpt11 23658 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st𝑧)‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹𝑘)))
11193, 110eqeltrd 2826 . . . . . 6 ((𝜑𝑘𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹𝑘)))
11282adantlr 713 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (1st𝑧) Fn 𝐴)
11387adantlr 713 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (2nd𝑧) Fn 𝐵)
11433ad2antrr 724 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (𝐴𝐵) = ∅)
115 simplr 767 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → 𝑘𝐵)
116 fvun2 6994 . . . . . . . . 9 (((1st𝑧) Fn 𝐴 ∧ (2nd𝑧) Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑘𝐵)) → (((1st𝑧) ∪ (2nd𝑧))‘𝑘) = ((2nd𝑧)‘𝑘))
117112, 113, 114, 115, 116syl112anc 1371 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (((1st𝑧) ∪ (2nd𝑧))‘𝑘) = ((2nd𝑧)‘𝑘))
118117mpteq2dva 5253 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd𝑧)‘𝑘)))
11976adantr 479 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
1205mpompt 7539 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧)) = (𝑥𝑋, 𝑦𝑌𝑦)
12169adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝐵) → 𝐾 ∈ (TopOn‘𝑋))
12274adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝐵) → 𝐿 ∈ (TopOn‘𝑌))
123121, 122cnmpt2nd 23664 . . . . . . . . 9 ((𝜑𝑘𝐵) → (𝑥𝑋, 𝑦𝑌𝑦) ∈ ((𝐾 ×t 𝐿) Cn 𝐿))
124120, 123eqeltrid 2830 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧)) ∈ ((𝐾 ×t 𝐿) Cn 𝐿))
12544adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝐵) → 𝐵 ∈ V)
12645adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝐵) → (𝐹𝐵):𝐵⟶Top)
127 simpr 483 . . . . . . . . . 10 ((𝜑𝑘𝐵) → 𝑘𝐵)
12850, 46ptpjcn 23606 . . . . . . . . . 10 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top ∧ 𝑘𝐵) → (𝑓𝑌 ↦ (𝑓𝑘)) ∈ (𝐿 Cn ((𝐹𝐵)‘𝑘)))
129125, 126, 127, 128syl3anc 1368 . . . . . . . . 9 ((𝜑𝑘𝐵) → (𝑓𝑌 ↦ (𝑓𝑘)) ∈ (𝐿 Cn ((𝐹𝐵)‘𝑘)))
130 fvres 6920 . . . . . . . . . . 11 (𝑘𝐵 → ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
131130adantl 480 . . . . . . . . . 10 ((𝜑𝑘𝐵) → ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
132131oveq2d 7440 . . . . . . . . 9 ((𝜑𝑘𝐵) → (𝐿 Cn ((𝐹𝐵)‘𝑘)) = (𝐿 Cn (𝐹𝑘)))
133129, 132eleqtrd 2828 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑓𝑌 ↦ (𝑓𝑘)) ∈ (𝐿 Cn (𝐹𝑘)))
134 fveq1 6900 . . . . . . . 8 (𝑓 = (2nd𝑧) → (𝑓𝑘) = ((2nd𝑧)‘𝑘))
135119, 124, 122, 133, 134cnmpt11 23658 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd𝑧)‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹𝑘)))
136118, 135eqeltrd 2826 . . . . . 6 ((𝜑𝑘𝐵) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹𝑘)))
137111, 136jaodan 955 . . . . 5 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹𝑘)))
13880, 137syldan 589 . . . 4 ((𝜑𝑘𝐶) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹𝑘)))
13964, 76, 15, 20, 138ptcn 23622 . . 3 (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ (𝑘𝐶 ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘))) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
14063, 139eqeltrd 2826 . 2 (𝜑𝐺 ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
14126, 50, 64, 22, 46, 1, 15, 20, 17, 33ptuncnv 23802 . . 3 (𝜑𝐺 = (𝑧 𝐽 ↦ ⟨(𝑧𝐴), (𝑧𝐵)⟩))
142 pttop 23577 . . . . . . 7 ((𝐶𝑉𝐹:𝐶⟶Top) → (∏t𝐹) ∈ Top)
14315, 20, 142syl2anc 582 . . . . . 6 (𝜑 → (∏t𝐹) ∈ Top)
14464, 143eqeltrid 2830 . . . . 5 (𝜑𝐽 ∈ Top)
145 eqid 2726 . . . . . 6 𝐽 = 𝐽
146145toptopon 22910 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
147144, 146sylib 217 . . . 4 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
148145, 64, 22ptrescn 23634 . . . . 5 ((𝐶𝑉𝐹:𝐶⟶Top ∧ 𝐴𝐶) → (𝑧 𝐽 ↦ (𝑧𝐴)) ∈ (𝐽 Cn 𝐾))
14915, 20, 18, 148syl3anc 1368 . . . 4 (𝜑 → (𝑧 𝐽 ↦ (𝑧𝐴)) ∈ (𝐽 Cn 𝐾))
150145, 64, 46ptrescn 23634 . . . . 5 ((𝐶𝑉𝐹:𝐶⟶Top ∧ 𝐵𝐶) → (𝑧 𝐽 ↦ (𝑧𝐵)) ∈ (𝐽 Cn 𝐿))
15115, 20, 43, 150syl3anc 1368 . . . 4 (𝜑 → (𝑧 𝐽 ↦ (𝑧𝐵)) ∈ (𝐽 Cn 𝐿))
152147, 149, 151cnmpt1t 23660 . . 3 (𝜑 → (𝑧 𝐽 ↦ ⟨(𝑧𝐴), (𝑧𝐵)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
153141, 152eqeltrd 2826 . 2 (𝜑𝐺 ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
154 ishmeo 23754 . 2 (𝐺 ∈ ((𝐾 ×t 𝐿)Homeo𝐽) ↔ (𝐺 ∈ ((𝐾 ×t 𝐿) Cn 𝐽) ∧ 𝐺 ∈ (𝐽 Cn (𝐾 ×t 𝐿))))
155140, 153, 154sylanbrc 581 1 (𝜑𝐺 ∈ ((𝐾 ×t 𝐿)Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099  Vcvv 3462  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4325  cop 4639   cuni 4913  cmpt 5236   × cxp 5680  ccnv 5681  cres 5684   Fn wfn 6549  wf 6550  cfv 6554  (class class class)co 7424  cmpo 7426  1st c1st 8001  2nd c2nd 8002  Xcixp 8926  tcpt 17453  Topctop 22886  TopOnctopon 22903   Cn ccn 23219   ×t ctx 23555  Homeochmeo 23748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-1o 8496  df-2o 8497  df-map 8857  df-ixp 8927  df-en 8975  df-dom 8976  df-fin 8978  df-fi 9454  df-topgen 17458  df-pt 17459  df-top 22887  df-topon 22904  df-bases 22940  df-cn 23222  df-cnp 23223  df-tx 23557  df-hmeo 23750
This theorem is referenced by:  xpstopnlem1  23804  ptcmpfi  23808
  Copyright terms: Public domain W3C validator