MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptunhmeo Structured version   Visualization version   GIF version

Theorem ptunhmeo 23532
Description: Define a homeomorphism from a binary product of indexed product topologies to an indexed product topology on the union of the index sets. This is the topological analogue of (𝐴↑𝐡) Β· (𝐴↑𝐢) = 𝐴↑(𝐡 + 𝐢). (Contributed by Mario Carneiro, 8-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
ptunhmeo.x 𝑋 = βˆͺ 𝐾
ptunhmeo.y π‘Œ = βˆͺ 𝐿
ptunhmeo.j 𝐽 = (∏tβ€˜πΉ)
ptunhmeo.k 𝐾 = (∏tβ€˜(𝐹 β†Ύ 𝐴))
ptunhmeo.l 𝐿 = (∏tβ€˜(𝐹 β†Ύ 𝐡))
ptunhmeo.g 𝐺 = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ (π‘₯ βˆͺ 𝑦))
ptunhmeo.c (πœ‘ β†’ 𝐢 ∈ 𝑉)
ptunhmeo.f (πœ‘ β†’ 𝐹:𝐢⟢Top)
ptunhmeo.u (πœ‘ β†’ 𝐢 = (𝐴 βˆͺ 𝐡))
ptunhmeo.i (πœ‘ β†’ (𝐴 ∩ 𝐡) = βˆ…)
Assertion
Ref Expression
ptunhmeo (πœ‘ β†’ 𝐺 ∈ ((𝐾 Γ—t 𝐿)Homeo𝐽))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝐡,𝑦   πœ‘,π‘₯,𝑦   π‘₯,𝐢,𝑦   π‘₯,𝐹,𝑦   π‘₯,𝐽,𝑦   π‘₯,𝐾,𝑦   π‘₯,𝐿,𝑦   π‘₯,𝑋,𝑦   π‘₯,π‘Œ,𝑦
Allowed substitution hints:   𝐺(π‘₯,𝑦)   𝑉(π‘₯,𝑦)

Proof of Theorem ptunhmeo
Dummy variables 𝑓 π‘˜ 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptunhmeo.g . . . . 5 𝐺 = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ (π‘₯ βˆͺ 𝑦))
2 vex 3476 . . . . . . . 8 π‘₯ ∈ V
3 vex 3476 . . . . . . . 8 𝑦 ∈ V
42, 3op1std 7987 . . . . . . 7 (𝑧 = ⟨π‘₯, π‘¦βŸ© β†’ (1st β€˜π‘§) = π‘₯)
52, 3op2ndd 7988 . . . . . . 7 (𝑧 = ⟨π‘₯, π‘¦βŸ© β†’ (2nd β€˜π‘§) = 𝑦)
64, 5uneq12d 4163 . . . . . 6 (𝑧 = ⟨π‘₯, π‘¦βŸ© β†’ ((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§)) = (π‘₯ βˆͺ 𝑦))
76mpompt 7524 . . . . 5 (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ (π‘₯ βˆͺ 𝑦))
81, 7eqtr4i 2761 . . . 4 𝐺 = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§)))
9 xp1st 8009 . . . . . . . . . 10 (𝑧 ∈ (𝑋 Γ— π‘Œ) β†’ (1st β€˜π‘§) ∈ 𝑋)
109adantl 480 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (1st β€˜π‘§) ∈ 𝑋)
11 ixpeq2 8907 . . . . . . . . . . . . 13 (βˆ€π‘› ∈ 𝐴 βˆͺ ((𝐹 β†Ύ 𝐴)β€˜π‘›) = βˆͺ (πΉβ€˜π‘›) β†’ X𝑛 ∈ 𝐴 βˆͺ ((𝐹 β†Ύ 𝐴)β€˜π‘›) = X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›))
12 fvres 6909 . . . . . . . . . . . . . 14 (𝑛 ∈ 𝐴 β†’ ((𝐹 β†Ύ 𝐴)β€˜π‘›) = (πΉβ€˜π‘›))
1312unieqd 4921 . . . . . . . . . . . . 13 (𝑛 ∈ 𝐴 β†’ βˆͺ ((𝐹 β†Ύ 𝐴)β€˜π‘›) = βˆͺ (πΉβ€˜π‘›))
1411, 13mprg 3065 . . . . . . . . . . . 12 X𝑛 ∈ 𝐴 βˆͺ ((𝐹 β†Ύ 𝐴)β€˜π‘›) = X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›)
15 ptunhmeo.c . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐢 ∈ 𝑉)
16 ssun1 4171 . . . . . . . . . . . . . . 15 𝐴 βŠ† (𝐴 βˆͺ 𝐡)
17 ptunhmeo.u . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐢 = (𝐴 βˆͺ 𝐡))
1816, 17sseqtrrid 4034 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐴 βŠ† 𝐢)
1915, 18ssexd 5323 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐴 ∈ V)
20 ptunhmeo.f . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐹:𝐢⟢Top)
2120, 18fssresd 6757 . . . . . . . . . . . . 13 (πœ‘ β†’ (𝐹 β†Ύ 𝐴):𝐴⟢Top)
22 ptunhmeo.k . . . . . . . . . . . . . 14 𝐾 = (∏tβ€˜(𝐹 β†Ύ 𝐴))
2322ptuni 23318 . . . . . . . . . . . . 13 ((𝐴 ∈ V ∧ (𝐹 β†Ύ 𝐴):𝐴⟢Top) β†’ X𝑛 ∈ 𝐴 βˆͺ ((𝐹 β†Ύ 𝐴)β€˜π‘›) = βˆͺ 𝐾)
2419, 21, 23syl2anc 582 . . . . . . . . . . . 12 (πœ‘ β†’ X𝑛 ∈ 𝐴 βˆͺ ((𝐹 β†Ύ 𝐴)β€˜π‘›) = βˆͺ 𝐾)
2514, 24eqtr3id 2784 . . . . . . . . . . 11 (πœ‘ β†’ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = βˆͺ 𝐾)
26 ptunhmeo.x . . . . . . . . . . 11 𝑋 = βˆͺ 𝐾
2725, 26eqtr4di 2788 . . . . . . . . . 10 (πœ‘ β†’ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = 𝑋)
2827adantr 479 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = 𝑋)
2910, 28eleqtrrd 2834 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (1st β€˜π‘§) ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›))
30 xp2nd 8010 . . . . . . . . . 10 (𝑧 ∈ (𝑋 Γ— π‘Œ) β†’ (2nd β€˜π‘§) ∈ π‘Œ)
3130adantl 480 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (2nd β€˜π‘§) ∈ π‘Œ)
3217eqcomd 2736 . . . . . . . . . . . . 13 (πœ‘ β†’ (𝐴 βˆͺ 𝐡) = 𝐢)
33 ptunhmeo.i . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝐴 ∩ 𝐡) = βˆ…)
34 uneqdifeq 4491 . . . . . . . . . . . . . 14 ((𝐴 βŠ† 𝐢 ∧ (𝐴 ∩ 𝐡) = βˆ…) β†’ ((𝐴 βˆͺ 𝐡) = 𝐢 ↔ (𝐢 βˆ– 𝐴) = 𝐡))
3518, 33, 34syl2anc 582 . . . . . . . . . . . . 13 (πœ‘ β†’ ((𝐴 βˆͺ 𝐡) = 𝐢 ↔ (𝐢 βˆ– 𝐴) = 𝐡))
3632, 35mpbid 231 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐢 βˆ– 𝐴) = 𝐡)
3736ixpeq1d 8905 . . . . . . . . . . 11 (πœ‘ β†’ X𝑛 ∈ (𝐢 βˆ– 𝐴)βˆͺ (πΉβ€˜π‘›) = X𝑛 ∈ 𝐡 βˆͺ (πΉβ€˜π‘›))
38 ixpeq2 8907 . . . . . . . . . . . . . 14 (βˆ€π‘› ∈ 𝐡 βˆͺ ((𝐹 β†Ύ 𝐡)β€˜π‘›) = βˆͺ (πΉβ€˜π‘›) β†’ X𝑛 ∈ 𝐡 βˆͺ ((𝐹 β†Ύ 𝐡)β€˜π‘›) = X𝑛 ∈ 𝐡 βˆͺ (πΉβ€˜π‘›))
39 fvres 6909 . . . . . . . . . . . . . . 15 (𝑛 ∈ 𝐡 β†’ ((𝐹 β†Ύ 𝐡)β€˜π‘›) = (πΉβ€˜π‘›))
4039unieqd 4921 . . . . . . . . . . . . . 14 (𝑛 ∈ 𝐡 β†’ βˆͺ ((𝐹 β†Ύ 𝐡)β€˜π‘›) = βˆͺ (πΉβ€˜π‘›))
4138, 40mprg 3065 . . . . . . . . . . . . 13 X𝑛 ∈ 𝐡 βˆͺ ((𝐹 β†Ύ 𝐡)β€˜π‘›) = X𝑛 ∈ 𝐡 βˆͺ (πΉβ€˜π‘›)
42 ssun2 4172 . . . . . . . . . . . . . . . 16 𝐡 βŠ† (𝐴 βˆͺ 𝐡)
4342, 17sseqtrrid 4034 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐡 βŠ† 𝐢)
4415, 43ssexd 5323 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐡 ∈ V)
4520, 43fssresd 6757 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝐹 β†Ύ 𝐡):𝐡⟢Top)
46 ptunhmeo.l . . . . . . . . . . . . . . 15 𝐿 = (∏tβ€˜(𝐹 β†Ύ 𝐡))
4746ptuni 23318 . . . . . . . . . . . . . 14 ((𝐡 ∈ V ∧ (𝐹 β†Ύ 𝐡):𝐡⟢Top) β†’ X𝑛 ∈ 𝐡 βˆͺ ((𝐹 β†Ύ 𝐡)β€˜π‘›) = βˆͺ 𝐿)
4844, 45, 47syl2anc 582 . . . . . . . . . . . . 13 (πœ‘ β†’ X𝑛 ∈ 𝐡 βˆͺ ((𝐹 β†Ύ 𝐡)β€˜π‘›) = βˆͺ 𝐿)
4941, 48eqtr3id 2784 . . . . . . . . . . . 12 (πœ‘ β†’ X𝑛 ∈ 𝐡 βˆͺ (πΉβ€˜π‘›) = βˆͺ 𝐿)
50 ptunhmeo.y . . . . . . . . . . . 12 π‘Œ = βˆͺ 𝐿
5149, 50eqtr4di 2788 . . . . . . . . . . 11 (πœ‘ β†’ X𝑛 ∈ 𝐡 βˆͺ (πΉβ€˜π‘›) = π‘Œ)
5237, 51eqtrd 2770 . . . . . . . . . 10 (πœ‘ β†’ X𝑛 ∈ (𝐢 βˆ– 𝐴)βˆͺ (πΉβ€˜π‘›) = π‘Œ)
5352adantr 479 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ X𝑛 ∈ (𝐢 βˆ– 𝐴)βˆͺ (πΉβ€˜π‘›) = π‘Œ)
5431, 53eleqtrrd 2834 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (2nd β€˜π‘§) ∈ X𝑛 ∈ (𝐢 βˆ– 𝐴)βˆͺ (πΉβ€˜π‘›))
5518adantr 479 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ 𝐴 βŠ† 𝐢)
56 undifixp 8930 . . . . . . . 8 (((1st β€˜π‘§) ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ∧ (2nd β€˜π‘§) ∈ X𝑛 ∈ (𝐢 βˆ– 𝐴)βˆͺ (πΉβ€˜π‘›) ∧ 𝐴 βŠ† 𝐢) β†’ ((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§)) ∈ X𝑛 ∈ 𝐢 βˆͺ (πΉβ€˜π‘›))
5729, 54, 55, 56syl3anc 1369 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ ((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§)) ∈ X𝑛 ∈ 𝐢 βˆͺ (πΉβ€˜π‘›))
58 ixpfn 8899 . . . . . . 7 (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§)) ∈ X𝑛 ∈ 𝐢 βˆͺ (πΉβ€˜π‘›) β†’ ((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§)) Fn 𝐢)
5957, 58syl 17 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ ((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§)) Fn 𝐢)
60 dffn5 6949 . . . . . 6 (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§)) Fn 𝐢 ↔ ((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§)) = (π‘˜ ∈ 𝐢 ↦ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜)))
6159, 60sylib 217 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ ((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§)) = (π‘˜ ∈ 𝐢 ↦ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜)))
6261mpteq2dva 5247 . . . 4 (πœ‘ β†’ (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))) = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (π‘˜ ∈ 𝐢 ↦ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜))))
638, 62eqtrid 2782 . . 3 (πœ‘ β†’ 𝐺 = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (π‘˜ ∈ 𝐢 ↦ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜))))
64 ptunhmeo.j . . . 4 𝐽 = (∏tβ€˜πΉ)
65 pttop 23306 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝐹 β†Ύ 𝐴):𝐴⟢Top) β†’ (∏tβ€˜(𝐹 β†Ύ 𝐴)) ∈ Top)
6619, 21, 65syl2anc 582 . . . . . . 7 (πœ‘ β†’ (∏tβ€˜(𝐹 β†Ύ 𝐴)) ∈ Top)
6722, 66eqeltrid 2835 . . . . . 6 (πœ‘ β†’ 𝐾 ∈ Top)
6826toptopon 22639 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOnβ€˜π‘‹))
6967, 68sylib 217 . . . . 5 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘‹))
70 pttop 23306 . . . . . . . 8 ((𝐡 ∈ V ∧ (𝐹 β†Ύ 𝐡):𝐡⟢Top) β†’ (∏tβ€˜(𝐹 β†Ύ 𝐡)) ∈ Top)
7144, 45, 70syl2anc 582 . . . . . . 7 (πœ‘ β†’ (∏tβ€˜(𝐹 β†Ύ 𝐡)) ∈ Top)
7246, 71eqeltrid 2835 . . . . . 6 (πœ‘ β†’ 𝐿 ∈ Top)
7350toptopon 22639 . . . . . 6 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOnβ€˜π‘Œ))
7472, 73sylib 217 . . . . 5 (πœ‘ β†’ 𝐿 ∈ (TopOnβ€˜π‘Œ))
75 txtopon 23315 . . . . 5 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐿 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐾 Γ—t 𝐿) ∈ (TopOnβ€˜(𝑋 Γ— π‘Œ)))
7669, 74, 75syl2anc 582 . . . 4 (πœ‘ β†’ (𝐾 Γ—t 𝐿) ∈ (TopOnβ€˜(𝑋 Γ— π‘Œ)))
7717eleq2d 2817 . . . . . . 7 (πœ‘ β†’ (π‘˜ ∈ 𝐢 ↔ π‘˜ ∈ (𝐴 βˆͺ 𝐡)))
7877biimpa 475 . . . . . 6 ((πœ‘ ∧ π‘˜ ∈ 𝐢) β†’ π‘˜ ∈ (𝐴 βˆͺ 𝐡))
79 elun 4147 . . . . . 6 (π‘˜ ∈ (𝐴 βˆͺ 𝐡) ↔ (π‘˜ ∈ 𝐴 ∨ π‘˜ ∈ 𝐡))
8078, 79sylib 217 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ 𝐢) β†’ (π‘˜ ∈ 𝐴 ∨ π‘˜ ∈ 𝐡))
81 ixpfn 8899 . . . . . . . . . . 11 ((1st β€˜π‘§) ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) β†’ (1st β€˜π‘§) Fn 𝐴)
8229, 81syl 17 . . . . . . . . . 10 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (1st β€˜π‘§) Fn 𝐴)
8382adantlr 711 . . . . . . . . 9 (((πœ‘ ∧ π‘˜ ∈ 𝐴) ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (1st β€˜π‘§) Fn 𝐴)
8451adantr 479 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ X𝑛 ∈ 𝐡 βˆͺ (πΉβ€˜π‘›) = π‘Œ)
8531, 84eleqtrrd 2834 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (2nd β€˜π‘§) ∈ X𝑛 ∈ 𝐡 βˆͺ (πΉβ€˜π‘›))
86 ixpfn 8899 . . . . . . . . . . 11 ((2nd β€˜π‘§) ∈ X𝑛 ∈ 𝐡 βˆͺ (πΉβ€˜π‘›) β†’ (2nd β€˜π‘§) Fn 𝐡)
8785, 86syl 17 . . . . . . . . . 10 ((πœ‘ ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (2nd β€˜π‘§) Fn 𝐡)
8887adantlr 711 . . . . . . . . 9 (((πœ‘ ∧ π‘˜ ∈ 𝐴) ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (2nd β€˜π‘§) Fn 𝐡)
8933ad2antrr 722 . . . . . . . . 9 (((πœ‘ ∧ π‘˜ ∈ 𝐴) ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (𝐴 ∩ 𝐡) = βˆ…)
90 simplr 765 . . . . . . . . 9 (((πœ‘ ∧ π‘˜ ∈ 𝐴) ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ π‘˜ ∈ 𝐴)
91 fvun1 6981 . . . . . . . . 9 (((1st β€˜π‘§) Fn 𝐴 ∧ (2nd β€˜π‘§) Fn 𝐡 ∧ ((𝐴 ∩ 𝐡) = βˆ… ∧ π‘˜ ∈ 𝐴)) β†’ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜) = ((1st β€˜π‘§)β€˜π‘˜))
9283, 88, 89, 90, 91syl112anc 1372 . . . . . . . 8 (((πœ‘ ∧ π‘˜ ∈ 𝐴) ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜) = ((1st β€˜π‘§)β€˜π‘˜))
9392mpteq2dva 5247 . . . . . . 7 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜)) = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((1st β€˜π‘§)β€˜π‘˜)))
9476adantr 479 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝐾 Γ—t 𝐿) ∈ (TopOnβ€˜(𝑋 Γ— π‘Œ)))
954mpompt 7524 . . . . . . . . 9 (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (1st β€˜π‘§)) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ π‘₯)
9669adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐾 ∈ (TopOnβ€˜π‘‹))
9774adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐿 ∈ (TopOnβ€˜π‘Œ))
9896, 97cnmpt1st 23392 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ π‘₯) ∈ ((𝐾 Γ—t 𝐿) Cn 𝐾))
9995, 98eqeltrid 2835 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (1st β€˜π‘§)) ∈ ((𝐾 Γ—t 𝐿) Cn 𝐾))
10019adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐴 ∈ V)
10121adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝐹 β†Ύ 𝐴):𝐴⟢Top)
102 simpr 483 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ π‘˜ ∈ 𝐴)
10326, 22ptpjcn 23335 . . . . . . . . . 10 ((𝐴 ∈ V ∧ (𝐹 β†Ύ 𝐴):𝐴⟢Top ∧ π‘˜ ∈ 𝐴) β†’ (𝑓 ∈ 𝑋 ↦ (π‘“β€˜π‘˜)) ∈ (𝐾 Cn ((𝐹 β†Ύ 𝐴)β€˜π‘˜)))
104100, 101, 102, 103syl3anc 1369 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝑓 ∈ 𝑋 ↦ (π‘“β€˜π‘˜)) ∈ (𝐾 Cn ((𝐹 β†Ύ 𝐴)β€˜π‘˜)))
105 fvres 6909 . . . . . . . . . . 11 (π‘˜ ∈ 𝐴 β†’ ((𝐹 β†Ύ 𝐴)β€˜π‘˜) = (πΉβ€˜π‘˜))
106105adantl 480 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((𝐹 β†Ύ 𝐴)β€˜π‘˜) = (πΉβ€˜π‘˜))
107106oveq2d 7427 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝐾 Cn ((𝐹 β†Ύ 𝐴)β€˜π‘˜)) = (𝐾 Cn (πΉβ€˜π‘˜)))
108104, 107eleqtrd 2833 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝑓 ∈ 𝑋 ↦ (π‘“β€˜π‘˜)) ∈ (𝐾 Cn (πΉβ€˜π‘˜)))
109 fveq1 6889 . . . . . . . 8 (𝑓 = (1st β€˜π‘§) β†’ (π‘“β€˜π‘˜) = ((1st β€˜π‘§)β€˜π‘˜))
11094, 99, 96, 108, 109cnmpt11 23387 . . . . . . 7 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((1st β€˜π‘§)β€˜π‘˜)) ∈ ((𝐾 Γ—t 𝐿) Cn (πΉβ€˜π‘˜)))
11193, 110eqeltrd 2831 . . . . . 6 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜)) ∈ ((𝐾 Γ—t 𝐿) Cn (πΉβ€˜π‘˜)))
11282adantlr 711 . . . . . . . . 9 (((πœ‘ ∧ π‘˜ ∈ 𝐡) ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (1st β€˜π‘§) Fn 𝐴)
11387adantlr 711 . . . . . . . . 9 (((πœ‘ ∧ π‘˜ ∈ 𝐡) ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (2nd β€˜π‘§) Fn 𝐡)
11433ad2antrr 722 . . . . . . . . 9 (((πœ‘ ∧ π‘˜ ∈ 𝐡) ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (𝐴 ∩ 𝐡) = βˆ…)
115 simplr 765 . . . . . . . . 9 (((πœ‘ ∧ π‘˜ ∈ 𝐡) ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ π‘˜ ∈ 𝐡)
116 fvun2 6982 . . . . . . . . 9 (((1st β€˜π‘§) Fn 𝐴 ∧ (2nd β€˜π‘§) Fn 𝐡 ∧ ((𝐴 ∩ 𝐡) = βˆ… ∧ π‘˜ ∈ 𝐡)) β†’ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜) = ((2nd β€˜π‘§)β€˜π‘˜))
117112, 113, 114, 115, 116syl112anc 1372 . . . . . . . 8 (((πœ‘ ∧ π‘˜ ∈ 𝐡) ∧ 𝑧 ∈ (𝑋 Γ— π‘Œ)) β†’ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜) = ((2nd β€˜π‘§)β€˜π‘˜))
118117mpteq2dva 5247 . . . . . . 7 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜)) = (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((2nd β€˜π‘§)β€˜π‘˜)))
11976adantr 479 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (𝐾 Γ—t 𝐿) ∈ (TopOnβ€˜(𝑋 Γ— π‘Œ)))
1205mpompt 7524 . . . . . . . . 9 (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (2nd β€˜π‘§)) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦)
12169adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ 𝐾 ∈ (TopOnβ€˜π‘‹))
12274adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ 𝐿 ∈ (TopOnβ€˜π‘Œ))
123121, 122cnmpt2nd 23393 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝑦) ∈ ((𝐾 Γ—t 𝐿) Cn 𝐿))
124120, 123eqeltrid 2835 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (2nd β€˜π‘§)) ∈ ((𝐾 Γ—t 𝐿) Cn 𝐿))
12544adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ 𝐡 ∈ V)
12645adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (𝐹 β†Ύ 𝐡):𝐡⟢Top)
127 simpr 483 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ π‘˜ ∈ 𝐡)
12850, 46ptpjcn 23335 . . . . . . . . . 10 ((𝐡 ∈ V ∧ (𝐹 β†Ύ 𝐡):𝐡⟢Top ∧ π‘˜ ∈ 𝐡) β†’ (𝑓 ∈ π‘Œ ↦ (π‘“β€˜π‘˜)) ∈ (𝐿 Cn ((𝐹 β†Ύ 𝐡)β€˜π‘˜)))
129125, 126, 127, 128syl3anc 1369 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (𝑓 ∈ π‘Œ ↦ (π‘“β€˜π‘˜)) ∈ (𝐿 Cn ((𝐹 β†Ύ 𝐡)β€˜π‘˜)))
130 fvres 6909 . . . . . . . . . . 11 (π‘˜ ∈ 𝐡 β†’ ((𝐹 β†Ύ 𝐡)β€˜π‘˜) = (πΉβ€˜π‘˜))
131130adantl 480 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ ((𝐹 β†Ύ 𝐡)β€˜π‘˜) = (πΉβ€˜π‘˜))
132131oveq2d 7427 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (𝐿 Cn ((𝐹 β†Ύ 𝐡)β€˜π‘˜)) = (𝐿 Cn (πΉβ€˜π‘˜)))
133129, 132eleqtrd 2833 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (𝑓 ∈ π‘Œ ↦ (π‘“β€˜π‘˜)) ∈ (𝐿 Cn (πΉβ€˜π‘˜)))
134 fveq1 6889 . . . . . . . 8 (𝑓 = (2nd β€˜π‘§) β†’ (π‘“β€˜π‘˜) = ((2nd β€˜π‘§)β€˜π‘˜))
135119, 124, 122, 133, 134cnmpt11 23387 . . . . . . 7 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ ((2nd β€˜π‘§)β€˜π‘˜)) ∈ ((𝐾 Γ—t 𝐿) Cn (πΉβ€˜π‘˜)))
136118, 135eqeltrd 2831 . . . . . 6 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜)) ∈ ((𝐾 Γ—t 𝐿) Cn (πΉβ€˜π‘˜)))
137111, 136jaodan 954 . . . . 5 ((πœ‘ ∧ (π‘˜ ∈ 𝐴 ∨ π‘˜ ∈ 𝐡)) β†’ (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜)) ∈ ((𝐾 Γ—t 𝐿) Cn (πΉβ€˜π‘˜)))
13880, 137syldan 589 . . . 4 ((πœ‘ ∧ π‘˜ ∈ 𝐢) β†’ (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜)) ∈ ((𝐾 Γ—t 𝐿) Cn (πΉβ€˜π‘˜)))
13964, 76, 15, 20, 138ptcn 23351 . . 3 (πœ‘ β†’ (𝑧 ∈ (𝑋 Γ— π‘Œ) ↦ (π‘˜ ∈ 𝐢 ↦ (((1st β€˜π‘§) βˆͺ (2nd β€˜π‘§))β€˜π‘˜))) ∈ ((𝐾 Γ—t 𝐿) Cn 𝐽))
14063, 139eqeltrd 2831 . 2 (πœ‘ β†’ 𝐺 ∈ ((𝐾 Γ—t 𝐿) Cn 𝐽))
14126, 50, 64, 22, 46, 1, 15, 20, 17, 33ptuncnv 23531 . . 3 (πœ‘ β†’ ◑𝐺 = (𝑧 ∈ βˆͺ 𝐽 ↦ ⟨(𝑧 β†Ύ 𝐴), (𝑧 β†Ύ 𝐡)⟩))
142 pttop 23306 . . . . . . 7 ((𝐢 ∈ 𝑉 ∧ 𝐹:𝐢⟢Top) β†’ (∏tβ€˜πΉ) ∈ Top)
14315, 20, 142syl2anc 582 . . . . . 6 (πœ‘ β†’ (∏tβ€˜πΉ) ∈ Top)
14464, 143eqeltrid 2835 . . . . 5 (πœ‘ β†’ 𝐽 ∈ Top)
145 eqid 2730 . . . . . 6 βˆͺ 𝐽 = βˆͺ 𝐽
146145toptopon 22639 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
147144, 146sylib 217 . . . 4 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
148145, 64, 22ptrescn 23363 . . . . 5 ((𝐢 ∈ 𝑉 ∧ 𝐹:𝐢⟢Top ∧ 𝐴 βŠ† 𝐢) β†’ (𝑧 ∈ βˆͺ 𝐽 ↦ (𝑧 β†Ύ 𝐴)) ∈ (𝐽 Cn 𝐾))
14915, 20, 18, 148syl3anc 1369 . . . 4 (πœ‘ β†’ (𝑧 ∈ βˆͺ 𝐽 ↦ (𝑧 β†Ύ 𝐴)) ∈ (𝐽 Cn 𝐾))
150145, 64, 46ptrescn 23363 . . . . 5 ((𝐢 ∈ 𝑉 ∧ 𝐹:𝐢⟢Top ∧ 𝐡 βŠ† 𝐢) β†’ (𝑧 ∈ βˆͺ 𝐽 ↦ (𝑧 β†Ύ 𝐡)) ∈ (𝐽 Cn 𝐿))
15115, 20, 43, 150syl3anc 1369 . . . 4 (πœ‘ β†’ (𝑧 ∈ βˆͺ 𝐽 ↦ (𝑧 β†Ύ 𝐡)) ∈ (𝐽 Cn 𝐿))
152147, 149, 151cnmpt1t 23389 . . 3 (πœ‘ β†’ (𝑧 ∈ βˆͺ 𝐽 ↦ ⟨(𝑧 β†Ύ 𝐴), (𝑧 β†Ύ 𝐡)⟩) ∈ (𝐽 Cn (𝐾 Γ—t 𝐿)))
153141, 152eqeltrd 2831 . 2 (πœ‘ β†’ ◑𝐺 ∈ (𝐽 Cn (𝐾 Γ—t 𝐿)))
154 ishmeo 23483 . 2 (𝐺 ∈ ((𝐾 Γ—t 𝐿)Homeo𝐽) ↔ (𝐺 ∈ ((𝐾 Γ—t 𝐿) Cn 𝐽) ∧ ◑𝐺 ∈ (𝐽 Cn (𝐾 Γ—t 𝐿))))
155140, 153, 154sylanbrc 581 1 (πœ‘ β†’ 𝐺 ∈ ((𝐾 Γ—t 𝐿)Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 843   = wceq 1539   ∈ wcel 2104  Vcvv 3472   βˆ– cdif 3944   βˆͺ cun 3945   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  βŸ¨cop 4633  βˆͺ cuni 4907   ↦ cmpt 5230   Γ— cxp 5673  β—‘ccnv 5674   β†Ύ cres 5677   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411   ∈ cmpo 7413  1st c1st 7975  2nd c2nd 7976  Xcixp 8893  βˆtcpt 17388  Topctop 22615  TopOnctopon 22632   Cn ccn 22948   Γ—t ctx 23284  Homeochmeo 23477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-1o 8468  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-fin 8945  df-fi 9408  df-topgen 17393  df-pt 17394  df-top 22616  df-topon 22633  df-bases 22669  df-cn 22951  df-cnp 22952  df-tx 23286  df-hmeo 23479
This theorem is referenced by:  xpstopnlem1  23533  ptcmpfi  23537
  Copyright terms: Public domain W3C validator