Step | Hyp | Ref
| Expression |
1 | | ptunhmeo.g |
. . . . 5
⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥 ∪ 𝑦)) |
2 | | vex 3412 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
3 | | vex 3412 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
4 | 2, 3 | op1std 7771 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
5 | 2, 3 | op2ndd 7772 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
6 | 4, 5 | uneq12d 4078 |
. . . . . 6
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((1st ‘𝑧) ∪ (2nd
‘𝑧)) = (𝑥 ∪ 𝑦)) |
7 | 6 | mpompt 7324 |
. . . . 5
⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ‘𝑧) ∪ (2nd
‘𝑧))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥 ∪ 𝑦)) |
8 | 1, 7 | eqtr4i 2768 |
. . . 4
⊢ 𝐺 = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ‘𝑧) ∪ (2nd
‘𝑧))) |
9 | | xp1st 7793 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (1st ‘𝑧) ∈ 𝑋) |
10 | 9 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (1st ‘𝑧) ∈ 𝑋) |
11 | | ixpeq2 8592 |
. . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
𝐴 ∪ ((𝐹
↾ 𝐴)‘𝑛) = ∪
(𝐹‘𝑛) → X𝑛 ∈ 𝐴 ∪ ((𝐹 ↾ 𝐴)‘𝑛) = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛)) |
12 | | fvres 6736 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑛) = (𝐹‘𝑛)) |
13 | 12 | unieqd 4833 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ 𝐴 → ∪ ((𝐹 ↾ 𝐴)‘𝑛) = ∪ (𝐹‘𝑛)) |
14 | 11, 13 | mprg 3075 |
. . . . . . . . . . . 12
⊢ X𝑛 ∈
𝐴 ∪ ((𝐹
↾ 𝐴)‘𝑛) = X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) |
15 | | ptunhmeo.c |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
16 | | ssun1 4086 |
. . . . . . . . . . . . . . 15
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
17 | | ptunhmeo.u |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐶 = (𝐴 ∪ 𝐵)) |
18 | 16, 17 | sseqtrrid 3954 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
19 | 15, 18 | ssexd 5217 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ V) |
20 | | ptunhmeo.f |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:𝐶⟶Top) |
21 | 20, 18 | fssresd 6586 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶Top) |
22 | | ptunhmeo.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 =
(∏t‘(𝐹 ↾ 𝐴)) |
23 | 22 | ptuni 22491 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ V ∧ (𝐹 ↾ 𝐴):𝐴⟶Top) → X𝑛 ∈
𝐴 ∪ ((𝐹
↾ 𝐴)‘𝑛) = ∪
𝐾) |
24 | 19, 21, 23 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (𝜑 → X𝑛 ∈
𝐴 ∪ ((𝐹
↾ 𝐴)‘𝑛) = ∪
𝐾) |
25 | 14, 24 | eqtr3id 2792 |
. . . . . . . . . . 11
⊢ (𝜑 → X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐾) |
26 | | ptunhmeo.x |
. . . . . . . . . . 11
⊢ 𝑋 = ∪
𝐾 |
27 | 25, 26 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝜑 → X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) = 𝑋) |
28 | 27 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = 𝑋) |
29 | 10, 28 | eleqtrrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (1st ‘𝑧) ∈ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛)) |
30 | | xp2nd 7794 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (2nd ‘𝑧) ∈ 𝑌) |
31 | 30 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑧) ∈ 𝑌) |
32 | 17 | eqcomd 2743 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∪ 𝐵) = 𝐶) |
33 | | ptunhmeo.i |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
34 | | uneqdifeq 4404 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ 𝐶 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐴 ∪ 𝐵) = 𝐶 ↔ (𝐶 ∖ 𝐴) = 𝐵)) |
35 | 18, 33, 34 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐴 ∪ 𝐵) = 𝐶 ↔ (𝐶 ∖ 𝐴) = 𝐵)) |
36 | 32, 35 | mpbid 235 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∖ 𝐴) = 𝐵) |
37 | 36 | ixpeq1d 8590 |
. . . . . . . . . . 11
⊢ (𝜑 → X𝑛 ∈
(𝐶 ∖ 𝐴)∪
(𝐹‘𝑛) = X𝑛 ∈ 𝐵 ∪ (𝐹‘𝑛)) |
38 | | ixpeq2 8592 |
. . . . . . . . . . . . . 14
⊢
(∀𝑛 ∈
𝐵 ∪ ((𝐹
↾ 𝐵)‘𝑛) = ∪
(𝐹‘𝑛) → X𝑛 ∈ 𝐵 ∪ ((𝐹 ↾ 𝐵)‘𝑛) = X𝑛 ∈ 𝐵 ∪ (𝐹‘𝑛)) |
39 | | fvres 6736 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑛) = (𝐹‘𝑛)) |
40 | 39 | unieqd 4833 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝐵 → ∪ ((𝐹 ↾ 𝐵)‘𝑛) = ∪ (𝐹‘𝑛)) |
41 | 38, 40 | mprg 3075 |
. . . . . . . . . . . . 13
⊢ X𝑛 ∈
𝐵 ∪ ((𝐹
↾ 𝐵)‘𝑛) = X𝑛 ∈
𝐵 ∪ (𝐹‘𝑛) |
42 | | ssun2 4087 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
43 | 42, 17 | sseqtrrid 3954 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
44 | 15, 43 | ssexd 5217 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ V) |
45 | 20, 43 | fssresd 6586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵⟶Top) |
46 | | ptunhmeo.l |
. . . . . . . . . . . . . . 15
⊢ 𝐿 =
(∏t‘(𝐹 ↾ 𝐵)) |
47 | 46 | ptuni 22491 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ V ∧ (𝐹 ↾ 𝐵):𝐵⟶Top) → X𝑛 ∈
𝐵 ∪ ((𝐹
↾ 𝐵)‘𝑛) = ∪
𝐿) |
48 | 44, 45, 47 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (𝜑 → X𝑛 ∈
𝐵 ∪ ((𝐹
↾ 𝐵)‘𝑛) = ∪
𝐿) |
49 | 41, 48 | eqtr3id 2792 |
. . . . . . . . . . . 12
⊢ (𝜑 → X𝑛 ∈
𝐵 ∪ (𝐹‘𝑛) = ∪ 𝐿) |
50 | | ptunhmeo.y |
. . . . . . . . . . . 12
⊢ 𝑌 = ∪
𝐿 |
51 | 49, 50 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝜑 → X𝑛 ∈
𝐵 ∪ (𝐹‘𝑛) = 𝑌) |
52 | 37, 51 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (𝜑 → X𝑛 ∈
(𝐶 ∖ 𝐴)∪
(𝐹‘𝑛) = 𝑌) |
53 | 52 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → X𝑛 ∈ (𝐶 ∖ 𝐴)∪ (𝐹‘𝑛) = 𝑌) |
54 | 31, 53 | eleqtrrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑧) ∈ X𝑛 ∈
(𝐶 ∖ 𝐴)∪
(𝐹‘𝑛)) |
55 | 18 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → 𝐴 ⊆ 𝐶) |
56 | | undifixp 8615 |
. . . . . . . 8
⊢
(((1st ‘𝑧) ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ∧ (2nd ‘𝑧) ∈ X𝑛 ∈
(𝐶 ∖ 𝐴)∪
(𝐹‘𝑛) ∧ 𝐴 ⊆ 𝐶) → ((1st ‘𝑧) ∪ (2nd
‘𝑧)) ∈ X𝑛 ∈
𝐶 ∪ (𝐹‘𝑛)) |
57 | 29, 54, 55, 56 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → ((1st ‘𝑧) ∪ (2nd
‘𝑧)) ∈ X𝑛 ∈
𝐶 ∪ (𝐹‘𝑛)) |
58 | | ixpfn 8584 |
. . . . . . 7
⊢
(((1st ‘𝑧) ∪ (2nd ‘𝑧)) ∈ X𝑛 ∈
𝐶 ∪ (𝐹‘𝑛) → ((1st ‘𝑧) ∪ (2nd
‘𝑧)) Fn 𝐶) |
59 | 57, 58 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → ((1st ‘𝑧) ∪ (2nd
‘𝑧)) Fn 𝐶) |
60 | | dffn5 6771 |
. . . . . 6
⊢
(((1st ‘𝑧) ∪ (2nd ‘𝑧)) Fn 𝐶 ↔ ((1st ‘𝑧) ∪ (2nd
‘𝑧)) = (𝑘 ∈ 𝐶 ↦ (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘))) |
61 | 59, 60 | sylib 221 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → ((1st ‘𝑧) ∪ (2nd
‘𝑧)) = (𝑘 ∈ 𝐶 ↦ (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘))) |
62 | 61 | mpteq2dva 5150 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ‘𝑧) ∪ (2nd
‘𝑧))) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (𝑘 ∈ 𝐶 ↦ (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘)))) |
63 | 8, 62 | syl5eq 2790 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑧 ∈ (𝑋 × 𝑌) ↦ (𝑘 ∈ 𝐶 ↦ (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘)))) |
64 | | ptunhmeo.j |
. . . 4
⊢ 𝐽 =
(∏t‘𝐹) |
65 | | pttop 22479 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ (𝐹 ↾ 𝐴):𝐴⟶Top) →
(∏t‘(𝐹 ↾ 𝐴)) ∈ Top) |
66 | 19, 21, 65 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 →
(∏t‘(𝐹 ↾ 𝐴)) ∈ Top) |
67 | 22, 66 | eqeltrid 2842 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Top) |
68 | 26 | toptopon 21814 |
. . . . . 6
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑋)) |
69 | 67, 68 | sylib 221 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
70 | | pttop 22479 |
. . . . . . . 8
⊢ ((𝐵 ∈ V ∧ (𝐹 ↾ 𝐵):𝐵⟶Top) →
(∏t‘(𝐹 ↾ 𝐵)) ∈ Top) |
71 | 44, 45, 70 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 →
(∏t‘(𝐹 ↾ 𝐵)) ∈ Top) |
72 | 46, 71 | eqeltrid 2842 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ Top) |
73 | 50 | toptopon 21814 |
. . . . . 6
⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘𝑌)) |
74 | 72, 73 | sylib 221 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) |
75 | | txtopon 22488 |
. . . . 5
⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
76 | 69, 74, 75 | syl2anc 587 |
. . . 4
⊢ (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
77 | 17 | eleq2d 2823 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝐶 ↔ 𝑘 ∈ (𝐴 ∪ 𝐵))) |
78 | 77 | biimpa 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝑘 ∈ (𝐴 ∪ 𝐵)) |
79 | | elun 4063 |
. . . . . 6
⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) |
80 | 78, 79 | sylib 221 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) |
81 | | ixpfn 8584 |
. . . . . . . . . . 11
⊢
((1st ‘𝑧) ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) → (1st ‘𝑧) Fn 𝐴) |
82 | 29, 81 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (1st ‘𝑧) Fn 𝐴) |
83 | 82 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (1st ‘𝑧) Fn 𝐴) |
84 | 51 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → X𝑛 ∈ 𝐵 ∪ (𝐹‘𝑛) = 𝑌) |
85 | 31, 84 | eleqtrrd 2841 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑧) ∈ X𝑛 ∈
𝐵 ∪ (𝐹‘𝑛)) |
86 | | ixpfn 8584 |
. . . . . . . . . . 11
⊢
((2nd ‘𝑧) ∈ X𝑛 ∈ 𝐵 ∪ (𝐹‘𝑛) → (2nd ‘𝑧) Fn 𝐵) |
87 | 85, 86 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑧) Fn 𝐵) |
88 | 87 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑧) Fn 𝐵) |
89 | 33 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (𝐴 ∩ 𝐵) = ∅) |
90 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → 𝑘 ∈ 𝐴) |
91 | | fvun1 6802 |
. . . . . . . . 9
⊢
(((1st ‘𝑧) Fn 𝐴 ∧ (2nd ‘𝑧) Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑘 ∈ 𝐴)) → (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘) = ((1st
‘𝑧)‘𝑘)) |
92 | 83, 88, 89, 90, 91 | syl112anc 1376 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘) = ((1st
‘𝑧)‘𝑘)) |
93 | 92 | mpteq2dva 5150 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ‘𝑧)‘𝑘))) |
94 | 76 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
95 | 4 | mpompt 7324 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) |
96 | 69 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐾 ∈ (TopOn‘𝑋)) |
97 | 74 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐿 ∈ (TopOn‘𝑌)) |
98 | 96, 97 | cnmpt1st 22565 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐾 ×t 𝐿) Cn 𝐾)) |
99 | 95, 98 | eqeltrid 2842 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) ∈ ((𝐾 ×t 𝐿) Cn 𝐾)) |
100 | 19 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ∈ V) |
101 | 21 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹 ↾ 𝐴):𝐴⟶Top) |
102 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
103 | 26, 22 | ptpjcn 22508 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ (𝐹 ↾ 𝐴):𝐴⟶Top ∧ 𝑘 ∈ 𝐴) → (𝑓 ∈ 𝑋 ↦ (𝑓‘𝑘)) ∈ (𝐾 Cn ((𝐹 ↾ 𝐴)‘𝑘))) |
104 | 100, 101,
102, 103 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑓 ∈ 𝑋 ↦ (𝑓‘𝑘)) ∈ (𝐾 Cn ((𝐹 ↾ 𝐴)‘𝑘))) |
105 | | fvres 6736 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑘) = (𝐹‘𝑘)) |
106 | 105 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑘) = (𝐹‘𝑘)) |
107 | 106 | oveq2d 7229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐾 Cn ((𝐹 ↾ 𝐴)‘𝑘)) = (𝐾 Cn (𝐹‘𝑘))) |
108 | 104, 107 | eleqtrd 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑓 ∈ 𝑋 ↦ (𝑓‘𝑘)) ∈ (𝐾 Cn (𝐹‘𝑘))) |
109 | | fveq1 6716 |
. . . . . . . 8
⊢ (𝑓 = (1st ‘𝑧) → (𝑓‘𝑘) = ((1st ‘𝑧)‘𝑘)) |
110 | 94, 99, 96, 108, 109 | cnmpt11 22560 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ‘𝑧)‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹‘𝑘))) |
111 | 93, 110 | eqeltrd 2838 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹‘𝑘))) |
112 | 82 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (1st ‘𝑧) Fn 𝐴) |
113 | 87 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (2nd ‘𝑧) Fn 𝐵) |
114 | 33 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (𝐴 ∩ 𝐵) = ∅) |
115 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → 𝑘 ∈ 𝐵) |
116 | | fvun2 6803 |
. . . . . . . . 9
⊢
(((1st ‘𝑧) Fn 𝐴 ∧ (2nd ‘𝑧) Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑘 ∈ 𝐵)) → (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘) = ((2nd
‘𝑧)‘𝑘)) |
117 | 112, 113,
114, 115, 116 | syl112anc 1376 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘) = ((2nd
‘𝑧)‘𝑘)) |
118 | 117 | mpteq2dva 5150 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ‘𝑧)‘𝑘))) |
119 | 76 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
120 | 5 | mpompt 7324 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) |
121 | 69 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐾 ∈ (TopOn‘𝑋)) |
122 | 74 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐿 ∈ (TopOn‘𝑌)) |
123 | 121, 122 | cnmpt2nd 22566 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐾 ×t 𝐿) Cn 𝐿)) |
124 | 120, 123 | eqeltrid 2842 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) ∈ ((𝐾 ×t 𝐿) Cn 𝐿)) |
125 | 44 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐵 ∈ V) |
126 | 45 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝐹 ↾ 𝐵):𝐵⟶Top) |
127 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ 𝐵) |
128 | 50, 46 | ptpjcn 22508 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ V ∧ (𝐹 ↾ 𝐵):𝐵⟶Top ∧ 𝑘 ∈ 𝐵) → (𝑓 ∈ 𝑌 ↦ (𝑓‘𝑘)) ∈ (𝐿 Cn ((𝐹 ↾ 𝐵)‘𝑘))) |
129 | 125, 126,
127, 128 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑓 ∈ 𝑌 ↦ (𝑓‘𝑘)) ∈ (𝐿 Cn ((𝐹 ↾ 𝐵)‘𝑘))) |
130 | | fvres 6736 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑘) = (𝐹‘𝑘)) |
131 | 130 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝐹 ↾ 𝐵)‘𝑘) = (𝐹‘𝑘)) |
132 | 131 | oveq2d 7229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝐿 Cn ((𝐹 ↾ 𝐵)‘𝑘)) = (𝐿 Cn (𝐹‘𝑘))) |
133 | 129, 132 | eleqtrd 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑓 ∈ 𝑌 ↦ (𝑓‘𝑘)) ∈ (𝐿 Cn (𝐹‘𝑘))) |
134 | | fveq1 6716 |
. . . . . . . 8
⊢ (𝑓 = (2nd ‘𝑧) → (𝑓‘𝑘) = ((2nd ‘𝑧)‘𝑘)) |
135 | 119, 124,
122, 133, 134 | cnmpt11 22560 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ‘𝑧)‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹‘𝑘))) |
136 | 118, 135 | eqeltrd 2838 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹‘𝑘))) |
137 | 111, 136 | jaodan 958 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹‘𝑘))) |
138 | 80, 137 | syldan 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹‘𝑘))) |
139 | 64, 76, 15, 20, 138 | ptcn 22524 |
. . 3
⊢ (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ (𝑘 ∈ 𝐶 ↦ (((1st ‘𝑧) ∪ (2nd
‘𝑧))‘𝑘))) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
140 | 63, 139 | eqeltrd 2838 |
. 2
⊢ (𝜑 → 𝐺 ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
141 | 26, 50, 64, 22, 46, 1, 15, 20, 17, 33 | ptuncnv 22704 |
. . 3
⊢ (𝜑 → ◡𝐺 = (𝑧 ∈ ∪ 𝐽 ↦ 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉)) |
142 | | pttop 22479 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐹:𝐶⟶Top) →
(∏t‘𝐹) ∈ Top) |
143 | 15, 20, 142 | syl2anc 587 |
. . . . . 6
⊢ (𝜑 →
(∏t‘𝐹) ∈ Top) |
144 | 64, 143 | eqeltrid 2842 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Top) |
145 | | eqid 2737 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
146 | 145 | toptopon 21814 |
. . . . 5
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
147 | 144, 146 | sylib 221 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
148 | 145, 64, 22 | ptrescn 22536 |
. . . . 5
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐹:𝐶⟶Top ∧ 𝐴 ⊆ 𝐶) → (𝑧 ∈ ∪ 𝐽 ↦ (𝑧 ↾ 𝐴)) ∈ (𝐽 Cn 𝐾)) |
149 | 15, 20, 18, 148 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ ∪ 𝐽 ↦ (𝑧 ↾ 𝐴)) ∈ (𝐽 Cn 𝐾)) |
150 | 145, 64, 46 | ptrescn 22536 |
. . . . 5
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐹:𝐶⟶Top ∧ 𝐵 ⊆ 𝐶) → (𝑧 ∈ ∪ 𝐽 ↦ (𝑧 ↾ 𝐵)) ∈ (𝐽 Cn 𝐿)) |
151 | 15, 20, 43, 150 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ ∪ 𝐽 ↦ (𝑧 ↾ 𝐵)) ∈ (𝐽 Cn 𝐿)) |
152 | 147, 149,
151 | cnmpt1t 22562 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ∪ 𝐽 ↦ 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉) ∈ (𝐽 Cn (𝐾 ×t 𝐿))) |
153 | 141, 152 | eqeltrd 2838 |
. 2
⊢ (𝜑 → ◡𝐺 ∈ (𝐽 Cn (𝐾 ×t 𝐿))) |
154 | | ishmeo 22656 |
. 2
⊢ (𝐺 ∈ ((𝐾 ×t 𝐿)Homeo𝐽) ↔ (𝐺 ∈ ((𝐾 ×t 𝐿) Cn 𝐽) ∧ ◡𝐺 ∈ (𝐽 Cn (𝐾 ×t 𝐿)))) |
155 | 140, 153,
154 | sylanbrc 586 |
1
⊢ (𝜑 → 𝐺 ∈ ((𝐾 ×t 𝐿)Homeo𝐽)) |