| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoimbl | Structured version Visualization version GIF version | ||
| Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| hoimbl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| hoimbl.s | ⊢ 𝑆 = dom (voln‘𝑋) |
| hoimbl.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| hoimbl.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| Ref | Expression |
|---|---|
| hoimbl | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoimbl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑋 ∈ Fin) |
| 3 | 2 | rrnmbl 46585 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋)) |
| 4 | reex 11135 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
| 5 | mapdm0 8792 | . . . . . . . . 9 ⊢ (ℝ ∈ V → (ℝ ↑m ∅) = {∅}) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ (ℝ ↑m ∅) = {∅} |
| 7 | 6 | eqcomi 2738 | . . . . . . 7 ⊢ {∅} = (ℝ ↑m ∅) |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑋 = ∅ → {∅} = (ℝ ↑m ∅)) |
| 9 | id 22 | . . . . . . . 8 ⊢ (𝑋 = ∅ → 𝑋 = ∅) | |
| 10 | 9 | ixpeq1d 8859 | . . . . . . 7 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖))) |
| 11 | ixp0x 8876 | . . . . . . . 8 ⊢ X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅} | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅}) |
| 13 | 10, 12 | eqtrd 2764 | . . . . . 6 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅}) |
| 14 | oveq2 7377 | . . . . . 6 ⊢ (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅)) | |
| 15 | 8, 13, 14 | 3eqtr4d 2774 | . . . . 5 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = (ℝ ↑m 𝑋)) |
| 16 | 15 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = (ℝ ↑m 𝑋)) |
| 17 | hoimbl.s | . . . . 5 ⊢ 𝑆 = dom (voln‘𝑋) | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑆 = dom (voln‘𝑋)) |
| 19 | 16, 18 | eleq12d 2822 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆 ↔ (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋))) |
| 20 | 3, 19 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| 21 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
| 22 | 9 | necon3bi 2951 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) |
| 23 | 22 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 24 | hoimbl.a | . . . 4 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
| 26 | hoimbl.b | . . . 4 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ) |
| 28 | id 22 | . . . . . 6 ⊢ (𝑤 = 𝑥 → 𝑤 = 𝑥) | |
| 29 | eqidd 2730 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ℝ = ℝ) | |
| 30 | 28 | ixpeq1d 8859 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) |
| 31 | eqeq1 2733 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝑗 = ℎ ↔ 𝑖 = ℎ)) | |
| 32 | 31 | ifbid 4508 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
| 33 | 32 | cbvixpv 8865 | . . . . . . . 8 ⊢ X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) |
| 34 | 33 | a1i 11 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
| 35 | 30, 34 | eqtrd 2764 | . . . . . 6 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
| 36 | 28, 29, 35 | mpoeq123dv 7444 | . . . . 5 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) = (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ))) |
| 37 | eqeq2 2741 | . . . . . . . . 9 ⊢ (ℎ = 𝑙 → (𝑖 = ℎ ↔ 𝑖 = 𝑙)) | |
| 38 | 37 | ifbid 4508 | . . . . . . . 8 ⊢ (ℎ = 𝑙 → if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ)) |
| 39 | 38 | ixpeq2dv 8863 | . . . . . . 7 ⊢ (ℎ = 𝑙 → X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ)) |
| 40 | oveq2 7377 | . . . . . . . . 9 ⊢ (𝑧 = 𝑦 → (-∞(,)𝑧) = (-∞(,)𝑦)) | |
| 41 | 40 | ifeq1d 4504 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
| 42 | 41 | ixpeq2dv 8863 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
| 43 | 39, 42 | cbvmpov 7464 | . . . . . 6 ⊢ (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
| 44 | 43 | a1i 11 | . . . . 5 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
| 45 | 36, 44 | eqtrd 2764 | . . . 4 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
| 46 | 45 | cbvmptv 5206 | . . 3 ⊢ (𝑤 ∈ Fin ↦ (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
| 47 | 21, 23, 17, 25, 27, 46 | hoimbllem 46601 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| 48 | 20, 47 | pm2.61dan 812 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∅c0 4292 ifcif 4484 {csn 4585 ↦ cmpt 5183 dom cdm 5631 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ↑m cmap 8776 Xcixp 8847 Fincfn 8895 ℝcr 11043 -∞cmnf 11182 (,)cioo 13282 [,)cico 13284 volncvoln 46509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cc 10364 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-disj 5070 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-acn 9871 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-sum 15629 df-prod 15846 df-rest 17361 df-topgen 17382 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-top 22757 df-topon 22774 df-bases 22809 df-cmp 23250 df-ovol 25341 df-vol 25342 df-salg 46280 df-sumge0 46334 df-mea 46421 df-ome 46461 df-caragen 46463 df-ovoln 46508 df-voln 46510 |
| This theorem is referenced by: opnvonmbllem2 46604 hoimbl2 46636 vonhoi 46638 vonioolem1 46651 vonioolem2 46652 vonicclem1 46654 vonicclem2 46655 |
| Copyright terms: Public domain | W3C validator |