Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoimbl Structured version   Visualization version   GIF version

Theorem hoimbl 46660
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoimbl.x (𝜑𝑋 ∈ Fin)
hoimbl.s 𝑆 = dom (voln‘𝑋)
hoimbl.a (𝜑𝐴:𝑋⟶ℝ)
hoimbl.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hoimbl (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑆,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem hoimbl
Dummy variables 𝑙 𝑥 𝑦 𝑗 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoimbl.x . . . . 5 (𝜑𝑋 ∈ Fin)
21adantr 480 . . . 4 ((𝜑𝑋 = ∅) → 𝑋 ∈ Fin)
32rrnmbl 46643 . . 3 ((𝜑𝑋 = ∅) → (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋))
4 reex 11220 . . . . . . . . 9 ℝ ∈ V
5 mapdm0 8856 . . . . . . . . 9 (ℝ ∈ V → (ℝ ↑m ∅) = {∅})
64, 5ax-mp 5 . . . . . . . 8 (ℝ ↑m ∅) = {∅}
76eqcomi 2744 . . . . . . 7 {∅} = (ℝ ↑m ∅)
87a1i 11 . . . . . 6 (𝑋 = ∅ → {∅} = (ℝ ↑m ∅))
9 id 22 . . . . . . . 8 (𝑋 = ∅ → 𝑋 = ∅)
109ixpeq1d 8923 . . . . . . 7 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)))
11 ixp0x 8940 . . . . . . . 8 X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)) = {∅}
1211a1i 11 . . . . . . 7 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)) = {∅})
1310, 12eqtrd 2770 . . . . . 6 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = {∅})
14 oveq2 7413 . . . . . 6 (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
158, 13, 143eqtr4d 2780 . . . . 5 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = (ℝ ↑m 𝑋))
1615adantl 481 . . . 4 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = (ℝ ↑m 𝑋))
17 hoimbl.s . . . . 5 𝑆 = dom (voln‘𝑋)
1817a1i 11 . . . 4 ((𝜑𝑋 = ∅) → 𝑆 = dom (voln‘𝑋))
1916, 18eleq12d 2828 . . 3 ((𝜑𝑋 = ∅) → (X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆 ↔ (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋)))
203, 19mpbird 257 . 2 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
211adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
229necon3bi 2958 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
2322adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
24 hoimbl.a . . . 4 (𝜑𝐴:𝑋⟶ℝ)
2524adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
26 hoimbl.b . . . 4 (𝜑𝐵:𝑋⟶ℝ)
2726adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
28 id 22 . . . . . 6 (𝑤 = 𝑥𝑤 = 𝑥)
29 eqidd 2736 . . . . . 6 (𝑤 = 𝑥 → ℝ = ℝ)
3028ixpeq1d 8923 . . . . . . 7 (𝑤 = 𝑥X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ))
31 eqeq1 2739 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 = 𝑖 = ))
3231ifbid 4524 . . . . . . . . 9 (𝑗 = 𝑖 → if(𝑗 = , (-∞(,)𝑧), ℝ) = if(𝑖 = , (-∞(,)𝑧), ℝ))
3332cbvixpv 8929 . . . . . . . 8 X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)
3433a1i 11 . . . . . . 7 (𝑤 = 𝑥X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ))
3530, 34eqtrd 2770 . . . . . 6 (𝑤 = 𝑥X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ))
3628, 29, 35mpoeq123dv 7482 . . . . 5 (𝑤 = 𝑥 → (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ)) = (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)))
37 eqeq2 2747 . . . . . . . . 9 ( = 𝑙 → (𝑖 = 𝑖 = 𝑙))
3837ifbid 4524 . . . . . . . 8 ( = 𝑙 → if(𝑖 = , (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ))
3938ixpeq2dv 8927 . . . . . . 7 ( = 𝑙X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ))
40 oveq2 7413 . . . . . . . . 9 (𝑧 = 𝑦 → (-∞(,)𝑧) = (-∞(,)𝑦))
4140ifeq1d 4520 . . . . . . . 8 (𝑧 = 𝑦 → if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4241ixpeq2dv 8927 . . . . . . 7 (𝑧 = 𝑦X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4339, 42cbvmpov 7502 . . . . . 6 (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4443a1i 11 . . . . 5 (𝑤 = 𝑥 → (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4536, 44eqtrd 2770 . . . 4 (𝑤 = 𝑥 → (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4645cbvmptv 5225 . . 3 (𝑤 ∈ Fin ↦ (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4721, 23, 17, 25, 27, 46hoimbllem 46659 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
4820, 47pm2.61dan 812 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  c0 4308  ifcif 4500  {csn 4601  cmpt 5201  dom cdm 5654  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  m cmap 8840  Xcixp 8911  Fincfn 8959  cr 11128  -∞cmnf 11267  (,)cioo 13362  [,)cico 13364  volncvoln 46567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-prod 15920  df-rest 17436  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-cmp 23325  df-ovol 25417  df-vol 25418  df-salg 46338  df-sumge0 46392  df-mea 46479  df-ome 46519  df-caragen 46521  df-ovoln 46566  df-voln 46568
This theorem is referenced by:  opnvonmbllem2  46662  hoimbl2  46694  vonhoi  46696  vonioolem1  46709  vonioolem2  46710  vonicclem1  46712  vonicclem2  46713
  Copyright terms: Public domain W3C validator