Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoimbl Structured version   Visualization version   GIF version

Theorem hoimbl 46629
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoimbl.x (𝜑𝑋 ∈ Fin)
hoimbl.s 𝑆 = dom (voln‘𝑋)
hoimbl.a (𝜑𝐴:𝑋⟶ℝ)
hoimbl.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hoimbl (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑆,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem hoimbl
Dummy variables 𝑙 𝑥 𝑦 𝑗 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoimbl.x . . . . 5 (𝜑𝑋 ∈ Fin)
21adantr 480 . . . 4 ((𝜑𝑋 = ∅) → 𝑋 ∈ Fin)
32rrnmbl 46612 . . 3 ((𝜑𝑋 = ∅) → (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋))
4 reex 11159 . . . . . . . . 9 ℝ ∈ V
5 mapdm0 8815 . . . . . . . . 9 (ℝ ∈ V → (ℝ ↑m ∅) = {∅})
64, 5ax-mp 5 . . . . . . . 8 (ℝ ↑m ∅) = {∅}
76eqcomi 2738 . . . . . . 7 {∅} = (ℝ ↑m ∅)
87a1i 11 . . . . . 6 (𝑋 = ∅ → {∅} = (ℝ ↑m ∅))
9 id 22 . . . . . . . 8 (𝑋 = ∅ → 𝑋 = ∅)
109ixpeq1d 8882 . . . . . . 7 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)))
11 ixp0x 8899 . . . . . . . 8 X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)) = {∅}
1211a1i 11 . . . . . . 7 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)) = {∅})
1310, 12eqtrd 2764 . . . . . 6 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = {∅})
14 oveq2 7395 . . . . . 6 (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
158, 13, 143eqtr4d 2774 . . . . 5 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = (ℝ ↑m 𝑋))
1615adantl 481 . . . 4 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = (ℝ ↑m 𝑋))
17 hoimbl.s . . . . 5 𝑆 = dom (voln‘𝑋)
1817a1i 11 . . . 4 ((𝜑𝑋 = ∅) → 𝑆 = dom (voln‘𝑋))
1916, 18eleq12d 2822 . . 3 ((𝜑𝑋 = ∅) → (X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆 ↔ (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋)))
203, 19mpbird 257 . 2 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
211adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
229necon3bi 2951 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
2322adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
24 hoimbl.a . . . 4 (𝜑𝐴:𝑋⟶ℝ)
2524adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
26 hoimbl.b . . . 4 (𝜑𝐵:𝑋⟶ℝ)
2726adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
28 id 22 . . . . . 6 (𝑤 = 𝑥𝑤 = 𝑥)
29 eqidd 2730 . . . . . 6 (𝑤 = 𝑥 → ℝ = ℝ)
3028ixpeq1d 8882 . . . . . . 7 (𝑤 = 𝑥X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ))
31 eqeq1 2733 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 = 𝑖 = ))
3231ifbid 4512 . . . . . . . . 9 (𝑗 = 𝑖 → if(𝑗 = , (-∞(,)𝑧), ℝ) = if(𝑖 = , (-∞(,)𝑧), ℝ))
3332cbvixpv 8888 . . . . . . . 8 X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)
3433a1i 11 . . . . . . 7 (𝑤 = 𝑥X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ))
3530, 34eqtrd 2764 . . . . . 6 (𝑤 = 𝑥X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ))
3628, 29, 35mpoeq123dv 7464 . . . . 5 (𝑤 = 𝑥 → (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ)) = (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)))
37 eqeq2 2741 . . . . . . . . 9 ( = 𝑙 → (𝑖 = 𝑖 = 𝑙))
3837ifbid 4512 . . . . . . . 8 ( = 𝑙 → if(𝑖 = , (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ))
3938ixpeq2dv 8886 . . . . . . 7 ( = 𝑙X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ))
40 oveq2 7395 . . . . . . . . 9 (𝑧 = 𝑦 → (-∞(,)𝑧) = (-∞(,)𝑦))
4140ifeq1d 4508 . . . . . . . 8 (𝑧 = 𝑦 → if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4241ixpeq2dv 8886 . . . . . . 7 (𝑧 = 𝑦X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4339, 42cbvmpov 7484 . . . . . 6 (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4443a1i 11 . . . . 5 (𝑤 = 𝑥 → (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4536, 44eqtrd 2764 . . . 4 (𝑤 = 𝑥 → (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4645cbvmptv 5211 . . 3 (𝑤 ∈ Fin ↦ (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4721, 23, 17, 25, 27, 46hoimbllem 46628 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
4820, 47pm2.61dan 812 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  c0 4296  ifcif 4488  {csn 4589  cmpt 5188  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  Xcixp 8870  Fincfn 8918  cr 11067  -∞cmnf 11206  (,)cioo 13306  [,)cico 13308  volncvoln 46536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-salg 46307  df-sumge0 46361  df-mea 46448  df-ome 46488  df-caragen 46490  df-ovoln 46535  df-voln 46537
This theorem is referenced by:  opnvonmbllem2  46631  hoimbl2  46663  vonhoi  46665  vonioolem1  46678  vonioolem2  46679  vonicclem1  46681  vonicclem2  46682
  Copyright terms: Public domain W3C validator