Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoimbl Structured version   Visualization version   GIF version

Theorem hoimbl 44140
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoimbl.x (𝜑𝑋 ∈ Fin)
hoimbl.s 𝑆 = dom (voln‘𝑋)
hoimbl.a (𝜑𝐴:𝑋⟶ℝ)
hoimbl.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hoimbl (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑆,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem hoimbl
Dummy variables 𝑙 𝑥 𝑦 𝑗 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoimbl.x . . . . 5 (𝜑𝑋 ∈ Fin)
21adantr 481 . . . 4 ((𝜑𝑋 = ∅) → 𝑋 ∈ Fin)
32rrnmbl 44123 . . 3 ((𝜑𝑋 = ∅) → (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋))
4 reex 10963 . . . . . . . . 9 ℝ ∈ V
5 mapdm0 8613 . . . . . . . . 9 (ℝ ∈ V → (ℝ ↑m ∅) = {∅})
64, 5ax-mp 5 . . . . . . . 8 (ℝ ↑m ∅) = {∅}
76eqcomi 2749 . . . . . . 7 {∅} = (ℝ ↑m ∅)
87a1i 11 . . . . . 6 (𝑋 = ∅ → {∅} = (ℝ ↑m ∅))
9 id 22 . . . . . . . 8 (𝑋 = ∅ → 𝑋 = ∅)
109ixpeq1d 8680 . . . . . . 7 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)))
11 ixp0x 8697 . . . . . . . 8 X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)) = {∅}
1211a1i 11 . . . . . . 7 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)) = {∅})
1310, 12eqtrd 2780 . . . . . 6 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = {∅})
14 oveq2 7279 . . . . . 6 (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
158, 13, 143eqtr4d 2790 . . . . 5 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = (ℝ ↑m 𝑋))
1615adantl 482 . . . 4 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = (ℝ ↑m 𝑋))
17 hoimbl.s . . . . 5 𝑆 = dom (voln‘𝑋)
1817a1i 11 . . . 4 ((𝜑𝑋 = ∅) → 𝑆 = dom (voln‘𝑋))
1916, 18eleq12d 2835 . . 3 ((𝜑𝑋 = ∅) → (X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆 ↔ (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋)))
203, 19mpbird 256 . 2 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
211adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
229necon3bi 2972 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
2322adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
24 hoimbl.a . . . 4 (𝜑𝐴:𝑋⟶ℝ)
2524adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
26 hoimbl.b . . . 4 (𝜑𝐵:𝑋⟶ℝ)
2726adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
28 id 22 . . . . . 6 (𝑤 = 𝑥𝑤 = 𝑥)
29 eqidd 2741 . . . . . 6 (𝑤 = 𝑥 → ℝ = ℝ)
3028ixpeq1d 8680 . . . . . . 7 (𝑤 = 𝑥X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ))
31 eqeq1 2744 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 = 𝑖 = ))
3231ifbid 4488 . . . . . . . . 9 (𝑗 = 𝑖 → if(𝑗 = , (-∞(,)𝑧), ℝ) = if(𝑖 = , (-∞(,)𝑧), ℝ))
3332cbvixpv 8686 . . . . . . . 8 X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)
3433a1i 11 . . . . . . 7 (𝑤 = 𝑥X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ))
3530, 34eqtrd 2780 . . . . . 6 (𝑤 = 𝑥X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ))
3628, 29, 35mpoeq123dv 7344 . . . . 5 (𝑤 = 𝑥 → (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ)) = (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)))
37 eqeq2 2752 . . . . . . . . 9 ( = 𝑙 → (𝑖 = 𝑖 = 𝑙))
3837ifbid 4488 . . . . . . . 8 ( = 𝑙 → if(𝑖 = , (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ))
3938ixpeq2dv 8684 . . . . . . 7 ( = 𝑙X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ))
40 oveq2 7279 . . . . . . . . 9 (𝑧 = 𝑦 → (-∞(,)𝑧) = (-∞(,)𝑦))
4140ifeq1d 4484 . . . . . . . 8 (𝑧 = 𝑦 → if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4241ixpeq2dv 8684 . . . . . . 7 (𝑧 = 𝑦X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4339, 42cbvmpov 7364 . . . . . 6 (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4443a1i 11 . . . . 5 (𝑤 = 𝑥 → (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4536, 44eqtrd 2780 . . . 4 (𝑤 = 𝑥 → (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4645cbvmptv 5192 . . 3 (𝑤 ∈ Fin ↦ (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4721, 23, 17, 25, 27, 46hoimbllem 44139 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
4820, 47pm2.61dan 810 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  wne 2945  Vcvv 3431  c0 4262  ifcif 4465  {csn 4567  cmpt 5162  dom cdm 5590  wf 6428  cfv 6432  (class class class)co 7271  cmpo 7273  m cmap 8598  Xcixp 8668  Fincfn 8716  cr 10871  -∞cmnf 11008  (,)cioo 13078  [,)cico 13080  volncvoln 44047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cc 10192  ax-ac2 10220  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-tpos 8033  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-omul 8293  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-dju 9660  df-card 9698  df-acn 9701  df-ac 9873  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-rlim 15196  df-sum 15396  df-prod 15614  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-rest 17131  df-0g 17150  df-topgen 17152  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-subg 18750  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-oppr 19860  df-dvdsr 19881  df-unit 19882  df-invr 19912  df-dvr 19923  df-drng 19991  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-cnfld 20596  df-top 22041  df-topon 22058  df-bases 22094  df-cmp 22536  df-ovol 24626  df-vol 24627  df-salg 43821  df-sumge0 43872  df-mea 43959  df-ome 43999  df-caragen 44001  df-ovoln 44046  df-voln 44048
This theorem is referenced by:  opnvonmbllem2  44142  hoimbl2  44174  vonhoi  44176  vonioolem1  44189  vonioolem2  44190  vonicclem1  44192  vonicclem2  44193
  Copyright terms: Public domain W3C validator