Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoimbl Structured version   Visualization version   GIF version

Theorem hoimbl 41772
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoimbl.x (𝜑𝑋 ∈ Fin)
hoimbl.s 𝑆 = dom (voln‘𝑋)
hoimbl.a (𝜑𝐴:𝑋⟶ℝ)
hoimbl.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hoimbl (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑆,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem hoimbl
Dummy variables 𝑙 𝑥 𝑦 𝑗 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoimbl.x . . . . 5 (𝜑𝑋 ∈ Fin)
21adantr 474 . . . 4 ((𝜑𝑋 = ∅) → 𝑋 ∈ Fin)
32rrnmbl 41755 . . 3 ((𝜑𝑋 = ∅) → (ℝ ↑𝑚 𝑋) ∈ dom (voln‘𝑋))
4 reex 10363 . . . . . . . . 9 ℝ ∈ V
5 mapdm0 8155 . . . . . . . . 9 (ℝ ∈ V → (ℝ ↑𝑚 ∅) = {∅})
64, 5ax-mp 5 . . . . . . . 8 (ℝ ↑𝑚 ∅) = {∅}
76eqcomi 2787 . . . . . . 7 {∅} = (ℝ ↑𝑚 ∅)
87a1i 11 . . . . . 6 (𝑋 = ∅ → {∅} = (ℝ ↑𝑚 ∅))
9 id 22 . . . . . . . 8 (𝑋 = ∅ → 𝑋 = ∅)
109ixpeq1d 8206 . . . . . . 7 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)))
11 ixp0x 8222 . . . . . . . 8 X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)) = {∅}
1211a1i 11 . . . . . . 7 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)) = {∅})
1310, 12eqtrd 2814 . . . . . 6 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = {∅})
14 oveq2 6930 . . . . . 6 (𝑋 = ∅ → (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 ∅))
158, 13, 143eqtr4d 2824 . . . . 5 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = (ℝ ↑𝑚 𝑋))
1615adantl 475 . . . 4 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = (ℝ ↑𝑚 𝑋))
17 hoimbl.s . . . . 5 𝑆 = dom (voln‘𝑋)
1817a1i 11 . . . 4 ((𝜑𝑋 = ∅) → 𝑆 = dom (voln‘𝑋))
1916, 18eleq12d 2853 . . 3 ((𝜑𝑋 = ∅) → (X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆 ↔ (ℝ ↑𝑚 𝑋) ∈ dom (voln‘𝑋)))
203, 19mpbird 249 . 2 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
211adantr 474 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
229necon3bi 2995 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
2322adantl 475 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
24 hoimbl.a . . . 4 (𝜑𝐴:𝑋⟶ℝ)
2524adantr 474 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
26 hoimbl.b . . . 4 (𝜑𝐵:𝑋⟶ℝ)
2726adantr 474 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
28 id 22 . . . . . 6 (𝑤 = 𝑥𝑤 = 𝑥)
29 eqidd 2779 . . . . . 6 (𝑤 = 𝑥 → ℝ = ℝ)
3028ixpeq1d 8206 . . . . . . 7 (𝑤 = 𝑥X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ))
31 eqeq1 2782 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 = 𝑖 = ))
3231ifbid 4329 . . . . . . . . 9 (𝑗 = 𝑖 → if(𝑗 = , (-∞(,)𝑧), ℝ) = if(𝑖 = , (-∞(,)𝑧), ℝ))
3332cbvixpv 8212 . . . . . . . 8 X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)
3433a1i 11 . . . . . . 7 (𝑤 = 𝑥X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ))
3530, 34eqtrd 2814 . . . . . 6 (𝑤 = 𝑥X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ))
3628, 29, 35mpt2eq123dv 6994 . . . . 5 (𝑤 = 𝑥 → (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ)) = (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)))
37 eqeq2 2789 . . . . . . . . 9 ( = 𝑙 → (𝑖 = 𝑖 = 𝑙))
3837ifbid 4329 . . . . . . . 8 ( = 𝑙 → if(𝑖 = , (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ))
3938ixpeq2dv 8210 . . . . . . 7 ( = 𝑙X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ))
40 oveq2 6930 . . . . . . . . 9 (𝑧 = 𝑦 → (-∞(,)𝑧) = (-∞(,)𝑦))
4140ifeq1d 4325 . . . . . . . 8 (𝑧 = 𝑦 → if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4241ixpeq2dv 8210 . . . . . . 7 (𝑧 = 𝑦X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4339, 42cbvmpt2v 7012 . . . . . 6 (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4443a1i 11 . . . . 5 (𝑤 = 𝑥 → (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4536, 44eqtrd 2814 . . . 4 (𝑤 = 𝑥 → (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4645cbvmptv 4985 . . 3 (𝑤 ∈ Fin ↦ (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4721, 23, 17, 25, 27, 46hoimbllem 41771 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
4820, 47pm2.61dan 803 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  Vcvv 3398  c0 4141  ifcif 4307  {csn 4398  cmpt 4965  dom cdm 5355  wf 6131  cfv 6135  (class class class)co 6922  cmpt2 6924  𝑚 cmap 8140  Xcixp 8194  Fincfn 8241  cr 10271  -∞cmnf 10409  (,)cioo 12487  [,)cico 12489  volncvoln 41679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cc 9592  ax-ac2 9620  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-omul 7848  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-acn 9101  df-ac 9272  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-prod 15039  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-rest 16469  df-0g 16488  df-topgen 16490  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-subg 17975  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-drng 19141  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-bases 21158  df-cmp 21599  df-ovol 23668  df-vol 23669  df-salg 41453  df-sumge0 41504  df-mea 41591  df-ome 41631  df-caragen 41633  df-ovoln 41678  df-voln 41680
This theorem is referenced by:  opnvonmbllem2  41774  hoimbl2  41806  vonhoi  41808  vonioolem1  41821  vonioolem2  41822  vonicclem1  41824  vonicclem2  41825
  Copyright terms: Public domain W3C validator