| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoimbl | Structured version Visualization version GIF version | ||
| Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| hoimbl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| hoimbl.s | ⊢ 𝑆 = dom (voln‘𝑋) |
| hoimbl.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| hoimbl.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| Ref | Expression |
|---|---|
| hoimbl | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoimbl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑋 ∈ Fin) |
| 3 | 2 | rrnmbl 46612 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋)) |
| 4 | reex 11159 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
| 5 | mapdm0 8815 | . . . . . . . . 9 ⊢ (ℝ ∈ V → (ℝ ↑m ∅) = {∅}) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ (ℝ ↑m ∅) = {∅} |
| 7 | 6 | eqcomi 2738 | . . . . . . 7 ⊢ {∅} = (ℝ ↑m ∅) |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑋 = ∅ → {∅} = (ℝ ↑m ∅)) |
| 9 | id 22 | . . . . . . . 8 ⊢ (𝑋 = ∅ → 𝑋 = ∅) | |
| 10 | 9 | ixpeq1d 8882 | . . . . . . 7 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖))) |
| 11 | ixp0x 8899 | . . . . . . . 8 ⊢ X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅} | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅}) |
| 13 | 10, 12 | eqtrd 2764 | . . . . . 6 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅}) |
| 14 | oveq2 7395 | . . . . . 6 ⊢ (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅)) | |
| 15 | 8, 13, 14 | 3eqtr4d 2774 | . . . . 5 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = (ℝ ↑m 𝑋)) |
| 16 | 15 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = (ℝ ↑m 𝑋)) |
| 17 | hoimbl.s | . . . . 5 ⊢ 𝑆 = dom (voln‘𝑋) | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑆 = dom (voln‘𝑋)) |
| 19 | 16, 18 | eleq12d 2822 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆 ↔ (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋))) |
| 20 | 3, 19 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| 21 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
| 22 | 9 | necon3bi 2951 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) |
| 23 | 22 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 24 | hoimbl.a | . . . 4 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
| 26 | hoimbl.b | . . . 4 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ) |
| 28 | id 22 | . . . . . 6 ⊢ (𝑤 = 𝑥 → 𝑤 = 𝑥) | |
| 29 | eqidd 2730 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ℝ = ℝ) | |
| 30 | 28 | ixpeq1d 8882 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) |
| 31 | eqeq1 2733 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝑗 = ℎ ↔ 𝑖 = ℎ)) | |
| 32 | 31 | ifbid 4512 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
| 33 | 32 | cbvixpv 8888 | . . . . . . . 8 ⊢ X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) |
| 34 | 33 | a1i 11 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
| 35 | 30, 34 | eqtrd 2764 | . . . . . 6 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
| 36 | 28, 29, 35 | mpoeq123dv 7464 | . . . . 5 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) = (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ))) |
| 37 | eqeq2 2741 | . . . . . . . . 9 ⊢ (ℎ = 𝑙 → (𝑖 = ℎ ↔ 𝑖 = 𝑙)) | |
| 38 | 37 | ifbid 4512 | . . . . . . . 8 ⊢ (ℎ = 𝑙 → if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ)) |
| 39 | 38 | ixpeq2dv 8886 | . . . . . . 7 ⊢ (ℎ = 𝑙 → X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ)) |
| 40 | oveq2 7395 | . . . . . . . . 9 ⊢ (𝑧 = 𝑦 → (-∞(,)𝑧) = (-∞(,)𝑦)) | |
| 41 | 40 | ifeq1d 4508 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
| 42 | 41 | ixpeq2dv 8886 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
| 43 | 39, 42 | cbvmpov 7484 | . . . . . 6 ⊢ (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
| 44 | 43 | a1i 11 | . . . . 5 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
| 45 | 36, 44 | eqtrd 2764 | . . . 4 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
| 46 | 45 | cbvmptv 5211 | . . 3 ⊢ (𝑤 ∈ Fin ↦ (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
| 47 | 21, 23, 17, 25, 27, 46 | hoimbllem 46628 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| 48 | 20, 47 | pm2.61dan 812 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 ifcif 4488 {csn 4589 ↦ cmpt 5188 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ↑m cmap 8799 Xcixp 8870 Fincfn 8918 ℝcr 11067 -∞cmnf 11206 (,)cioo 13306 [,)cico 13308 volncvoln 46536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-prod 15870 df-rest 17385 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-cmp 23274 df-ovol 25365 df-vol 25366 df-salg 46307 df-sumge0 46361 df-mea 46448 df-ome 46488 df-caragen 46490 df-ovoln 46535 df-voln 46537 |
| This theorem is referenced by: opnvonmbllem2 46631 hoimbl2 46663 vonhoi 46665 vonioolem1 46678 vonioolem2 46679 vonicclem1 46681 vonicclem2 46682 |
| Copyright terms: Public domain | W3C validator |