Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoimbl | Structured version Visualization version GIF version |
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoimbl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoimbl.s | ⊢ 𝑆 = dom (voln‘𝑋) |
hoimbl.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
hoimbl.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
Ref | Expression |
---|---|
hoimbl | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoimbl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑋 ∈ Fin) |
3 | 2 | rrnmbl 44152 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋)) |
4 | reex 10962 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
5 | mapdm0 8630 | . . . . . . . . 9 ⊢ (ℝ ∈ V → (ℝ ↑m ∅) = {∅}) | |
6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ (ℝ ↑m ∅) = {∅} |
7 | 6 | eqcomi 2747 | . . . . . . 7 ⊢ {∅} = (ℝ ↑m ∅) |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑋 = ∅ → {∅} = (ℝ ↑m ∅)) |
9 | id 22 | . . . . . . . 8 ⊢ (𝑋 = ∅ → 𝑋 = ∅) | |
10 | 9 | ixpeq1d 8697 | . . . . . . 7 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖))) |
11 | ixp0x 8714 | . . . . . . . 8 ⊢ X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅} | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅}) |
13 | 10, 12 | eqtrd 2778 | . . . . . 6 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅}) |
14 | oveq2 7283 | . . . . . 6 ⊢ (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅)) | |
15 | 8, 13, 14 | 3eqtr4d 2788 | . . . . 5 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = (ℝ ↑m 𝑋)) |
16 | 15 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = (ℝ ↑m 𝑋)) |
17 | hoimbl.s | . . . . 5 ⊢ 𝑆 = dom (voln‘𝑋) | |
18 | 17 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑆 = dom (voln‘𝑋)) |
19 | 16, 18 | eleq12d 2833 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆 ↔ (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋))) |
20 | 3, 19 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
21 | 1 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
22 | 9 | necon3bi 2970 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) |
23 | 22 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
24 | hoimbl.a | . . . 4 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
25 | 24 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
26 | hoimbl.b | . . . 4 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
27 | 26 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ) |
28 | id 22 | . . . . . 6 ⊢ (𝑤 = 𝑥 → 𝑤 = 𝑥) | |
29 | eqidd 2739 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ℝ = ℝ) | |
30 | 28 | ixpeq1d 8697 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) |
31 | eqeq1 2742 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝑗 = ℎ ↔ 𝑖 = ℎ)) | |
32 | 31 | ifbid 4482 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
33 | 32 | cbvixpv 8703 | . . . . . . . 8 ⊢ X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) |
34 | 33 | a1i 11 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
35 | 30, 34 | eqtrd 2778 | . . . . . 6 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
36 | 28, 29, 35 | mpoeq123dv 7350 | . . . . 5 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) = (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ))) |
37 | eqeq2 2750 | . . . . . . . . 9 ⊢ (ℎ = 𝑙 → (𝑖 = ℎ ↔ 𝑖 = 𝑙)) | |
38 | 37 | ifbid 4482 | . . . . . . . 8 ⊢ (ℎ = 𝑙 → if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ)) |
39 | 38 | ixpeq2dv 8701 | . . . . . . 7 ⊢ (ℎ = 𝑙 → X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ)) |
40 | oveq2 7283 | . . . . . . . . 9 ⊢ (𝑧 = 𝑦 → (-∞(,)𝑧) = (-∞(,)𝑦)) | |
41 | 40 | ifeq1d 4478 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
42 | 41 | ixpeq2dv 8701 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
43 | 39, 42 | cbvmpov 7370 | . . . . . 6 ⊢ (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
44 | 43 | a1i 11 | . . . . 5 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
45 | 36, 44 | eqtrd 2778 | . . . 4 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
46 | 45 | cbvmptv 5187 | . . 3 ⊢ (𝑤 ∈ Fin ↦ (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
47 | 21, 23, 17, 25, 27, 46 | hoimbllem 44168 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
48 | 20, 47 | pm2.61dan 810 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 ifcif 4459 {csn 4561 ↦ cmpt 5157 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ↑m cmap 8615 Xcixp 8685 Fincfn 8733 ℝcr 10870 -∞cmnf 11007 (,)cioo 13079 [,)cico 13081 volncvoln 44076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cc 10191 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-sum 15398 df-prod 15616 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-rest 17133 df-0g 17152 df-topgen 17154 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-subg 18752 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-bases 22096 df-cmp 22538 df-ovol 24628 df-vol 24629 df-salg 43850 df-sumge0 43901 df-mea 43988 df-ome 44028 df-caragen 44030 df-ovoln 44075 df-voln 44077 |
This theorem is referenced by: opnvonmbllem2 44171 hoimbl2 44203 vonhoi 44205 vonioolem1 44218 vonioolem2 44219 vonicclem1 44221 vonicclem2 44222 |
Copyright terms: Public domain | W3C validator |