| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoimbl | Structured version Visualization version GIF version | ||
| Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| hoimbl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| hoimbl.s | ⊢ 𝑆 = dom (voln‘𝑋) |
| hoimbl.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| hoimbl.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| Ref | Expression |
|---|---|
| hoimbl | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoimbl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑋 ∈ Fin) |
| 3 | 2 | rrnmbl 46595 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋)) |
| 4 | reex 11100 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
| 5 | mapdm0 8769 | . . . . . . . . 9 ⊢ (ℝ ∈ V → (ℝ ↑m ∅) = {∅}) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ (ℝ ↑m ∅) = {∅} |
| 7 | 6 | eqcomi 2738 | . . . . . . 7 ⊢ {∅} = (ℝ ↑m ∅) |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑋 = ∅ → {∅} = (ℝ ↑m ∅)) |
| 9 | id 22 | . . . . . . . 8 ⊢ (𝑋 = ∅ → 𝑋 = ∅) | |
| 10 | 9 | ixpeq1d 8836 | . . . . . . 7 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖))) |
| 11 | ixp0x 8853 | . . . . . . . 8 ⊢ X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅} | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅}) |
| 13 | 10, 12 | eqtrd 2764 | . . . . . 6 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = {∅}) |
| 14 | oveq2 7357 | . . . . . 6 ⊢ (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅)) | |
| 15 | 8, 13, 14 | 3eqtr4d 2774 | . . . . 5 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = (ℝ ↑m 𝑋)) |
| 16 | 15 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) = (ℝ ↑m 𝑋)) |
| 17 | hoimbl.s | . . . . 5 ⊢ 𝑆 = dom (voln‘𝑋) | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑆 = dom (voln‘𝑋)) |
| 19 | 16, 18 | eleq12d 2822 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆 ↔ (ℝ ↑m 𝑋) ∈ dom (voln‘𝑋))) |
| 20 | 3, 19 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| 21 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
| 22 | 9 | necon3bi 2951 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) |
| 23 | 22 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 24 | hoimbl.a | . . . 4 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
| 26 | hoimbl.b | . . . 4 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ) |
| 28 | id 22 | . . . . . 6 ⊢ (𝑤 = 𝑥 → 𝑤 = 𝑥) | |
| 29 | eqidd 2730 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ℝ = ℝ) | |
| 30 | 28 | ixpeq1d 8836 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) |
| 31 | eqeq1 2733 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝑗 = ℎ ↔ 𝑖 = ℎ)) | |
| 32 | 31 | ifbid 4500 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
| 33 | 32 | cbvixpv 8842 | . . . . . . . 8 ⊢ X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) |
| 34 | 33 | a1i 11 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑥 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
| 35 | 30, 34 | eqtrd 2764 | . . . . . 6 ⊢ (𝑤 = 𝑥 → X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) |
| 36 | 28, 29, 35 | mpoeq123dv 7424 | . . . . 5 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) = (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ))) |
| 37 | eqeq2 2741 | . . . . . . . . 9 ⊢ (ℎ = 𝑙 → (𝑖 = ℎ ↔ 𝑖 = 𝑙)) | |
| 38 | 37 | ifbid 4500 | . . . . . . . 8 ⊢ (ℎ = 𝑙 → if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ)) |
| 39 | 38 | ixpeq2dv 8840 | . . . . . . 7 ⊢ (ℎ = 𝑙 → X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ)) |
| 40 | oveq2 7357 | . . . . . . . . 9 ⊢ (𝑧 = 𝑦 → (-∞(,)𝑧) = (-∞(,)𝑦)) | |
| 41 | 40 | ifeq1d 4496 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
| 42 | 41 | ixpeq2dv 8840 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
| 43 | 39, 42 | cbvmpov 7444 | . . . . . 6 ⊢ (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) |
| 44 | 43 | a1i 11 | . . . . 5 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑥, 𝑧 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
| 45 | 36, 44 | eqtrd 2764 | . . . 4 ⊢ (𝑤 = 𝑥 → (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
| 46 | 45 | cbvmptv 5196 | . . 3 ⊢ (𝑤 ∈ Fin ↦ (ℎ ∈ 𝑤, 𝑧 ∈ ℝ ↦ X𝑗 ∈ 𝑤 if(𝑗 = ℎ, (-∞(,)𝑧), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) |
| 47 | 21, 23, 17, 25, 27, 46 | hoimbllem 46611 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| 48 | 20, 47 | pm2.61dan 812 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∅c0 4284 ifcif 4476 {csn 4577 ↦ cmpt 5173 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ↑m cmap 8753 Xcixp 8824 Fincfn 8872 ℝcr 11008 -∞cmnf 11147 (,)cioo 13248 [,)cico 13250 volncvoln 46519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-rest 17326 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-bases 22831 df-cmp 23272 df-ovol 25363 df-vol 25364 df-salg 46290 df-sumge0 46344 df-mea 46431 df-ome 46471 df-caragen 46473 df-ovoln 46518 df-voln 46520 |
| This theorem is referenced by: opnvonmbllem2 46614 hoimbl2 46646 vonhoi 46648 vonioolem1 46661 vonioolem2 46662 vonicclem1 46664 vonicclem2 46665 |
| Copyright terms: Public domain | W3C validator |