Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1mo Structured version   Visualization version   GIF version

Theorem f1mo 46598
Description: A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
f1mo ((∃*𝑥 𝑥𝐴𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem f1mo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mo0sn 46579 . 2 (∃*𝑥 𝑥𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
2 f102g 46597 . . 3 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
3 vex 3445 . . . . . . 7 𝑦 ∈ V
4 f1sn2g 46596 . . . . . . 7 ((𝑦 ∈ V ∧ 𝐹:{𝑦}⟶𝐵) → 𝐹:{𝑦}–1-1𝐵)
53, 4mpan 687 . . . . . 6 (𝐹:{𝑦}⟶𝐵𝐹:{𝑦}–1-1𝐵)
6 feq2 6634 . . . . . . 7 (𝐴 = {𝑦} → (𝐹:𝐴𝐵𝐹:{𝑦}⟶𝐵))
7 f1eq2 6718 . . . . . . 7 (𝐴 = {𝑦} → (𝐹:𝐴1-1𝐵𝐹:{𝑦}–1-1𝐵))
86, 7imbi12d 344 . . . . . 6 (𝐴 = {𝑦} → ((𝐹:𝐴𝐵𝐹:𝐴1-1𝐵) ↔ (𝐹:{𝑦}⟶𝐵𝐹:{𝑦}–1-1𝐵)))
95, 8mpbiri 257 . . . . 5 (𝐴 = {𝑦} → (𝐹:𝐴𝐵𝐹:𝐴1-1𝐵))
109exlimiv 1932 . . . 4 (∃𝑦 𝐴 = {𝑦} → (𝐹:𝐴𝐵𝐹:𝐴1-1𝐵))
1110imp 407 . . 3 ((∃𝑦 𝐴 = {𝑦} ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
122, 11jaoian 954 . 2 (((𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}) ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
131, 12sylanb 581 1 ((∃*𝑥 𝑥𝐴𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1540  wex 1780  wcel 2105  ∃*wmo 2536  Vcvv 3441  c0 4270  {csn 4574  wf 6476  1-1wf1 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488
This theorem is referenced by:  thincfth  46747
  Copyright terms: Public domain W3C validator