Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1mo Structured version   Visualization version   GIF version

Theorem f1mo 46068
Description: A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
f1mo ((∃*𝑥 𝑥𝐴𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem f1mo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mo0sn 46049 . 2 (∃*𝑥 𝑥𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
2 f102g 46067 . . 3 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
3 vex 3426 . . . . . . 7 𝑦 ∈ V
4 f1sn2g 46066 . . . . . . 7 ((𝑦 ∈ V ∧ 𝐹:{𝑦}⟶𝐵) → 𝐹:{𝑦}–1-1𝐵)
53, 4mpan 686 . . . . . 6 (𝐹:{𝑦}⟶𝐵𝐹:{𝑦}–1-1𝐵)
6 feq2 6566 . . . . . . 7 (𝐴 = {𝑦} → (𝐹:𝐴𝐵𝐹:{𝑦}⟶𝐵))
7 f1eq2 6650 . . . . . . 7 (𝐴 = {𝑦} → (𝐹:𝐴1-1𝐵𝐹:{𝑦}–1-1𝐵))
86, 7imbi12d 344 . . . . . 6 (𝐴 = {𝑦} → ((𝐹:𝐴𝐵𝐹:𝐴1-1𝐵) ↔ (𝐹:{𝑦}⟶𝐵𝐹:{𝑦}–1-1𝐵)))
95, 8mpbiri 257 . . . . 5 (𝐴 = {𝑦} → (𝐹:𝐴𝐵𝐹:𝐴1-1𝐵))
109exlimiv 1934 . . . 4 (∃𝑦 𝐴 = {𝑦} → (𝐹:𝐴𝐵𝐹:𝐴1-1𝐵))
1110imp 406 . . 3 ((∃𝑦 𝐴 = {𝑦} ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
122, 11jaoian 953 . 2 (((𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}) ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
131, 12sylanb 580 1 ((∃*𝑥 𝑥𝐴𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  ∃*wmo 2538  Vcvv 3422  c0 4253  {csn 4558  wf 6414  1-1wf1 6415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  thincfth  46217
  Copyright terms: Public domain W3C validator