Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1mo Structured version   Visualization version   GIF version

Theorem f1mo 48566
Description: A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
f1mo ((∃*𝑥 𝑥𝐴𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem f1mo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mo0sn 48547 . 2 (∃*𝑥 𝑥𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
2 f102g 48565 . . 3 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
3 vex 3492 . . . . . . 7 𝑦 ∈ V
4 f1sn2g 48564 . . . . . . 7 ((𝑦 ∈ V ∧ 𝐹:{𝑦}⟶𝐵) → 𝐹:{𝑦}–1-1𝐵)
53, 4mpan 689 . . . . . 6 (𝐹:{𝑦}⟶𝐵𝐹:{𝑦}–1-1𝐵)
6 feq2 6729 . . . . . . 7 (𝐴 = {𝑦} → (𝐹:𝐴𝐵𝐹:{𝑦}⟶𝐵))
7 f1eq2 6813 . . . . . . 7 (𝐴 = {𝑦} → (𝐹:𝐴1-1𝐵𝐹:{𝑦}–1-1𝐵))
86, 7imbi12d 344 . . . . . 6 (𝐴 = {𝑦} → ((𝐹:𝐴𝐵𝐹:𝐴1-1𝐵) ↔ (𝐹:{𝑦}⟶𝐵𝐹:{𝑦}–1-1𝐵)))
95, 8mpbiri 258 . . . . 5 (𝐴 = {𝑦} → (𝐹:𝐴𝐵𝐹:𝐴1-1𝐵))
109exlimiv 1929 . . . 4 (∃𝑦 𝐴 = {𝑦} → (𝐹:𝐴𝐵𝐹:𝐴1-1𝐵))
1110imp 406 . . 3 ((∃𝑦 𝐴 = {𝑦} ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
122, 11jaoian 957 . 2 (((𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}) ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
131, 12sylanb 580 1 ((∃*𝑥 𝑥𝐴𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  ∃*wmo 2541  Vcvv 3488  c0 4352  {csn 4648  wf 6569  1-1wf1 6570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  thincfth  48715
  Copyright terms: Public domain W3C validator