| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1mo | Structured version Visualization version GIF version | ||
| Description: A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| f1mo | ⊢ ((∃*𝑥 𝑥 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mo0sn 48794 | . 2 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) | |
| 2 | f102g 48830 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) | |
| 3 | vex 3463 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | f1sn2g 48829 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝐹:{𝑦}⟶𝐵) → 𝐹:{𝑦}–1-1→𝐵) | |
| 5 | 3, 4 | mpan 690 | . . . . . 6 ⊢ (𝐹:{𝑦}⟶𝐵 → 𝐹:{𝑦}–1-1→𝐵) |
| 6 | feq2 6687 | . . . . . . 7 ⊢ (𝐴 = {𝑦} → (𝐹:𝐴⟶𝐵 ↔ 𝐹:{𝑦}⟶𝐵)) | |
| 7 | f1eq2 6770 | . . . . . . 7 ⊢ (𝐴 = {𝑦} → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:{𝑦}–1-1→𝐵)) | |
| 8 | 6, 7 | imbi12d 344 | . . . . . 6 ⊢ (𝐴 = {𝑦} → ((𝐹:𝐴⟶𝐵 → 𝐹:𝐴–1-1→𝐵) ↔ (𝐹:{𝑦}⟶𝐵 → 𝐹:{𝑦}–1-1→𝐵))) |
| 9 | 5, 8 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = {𝑦} → (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–1-1→𝐵)) |
| 10 | 9 | exlimiv 1930 | . . . 4 ⊢ (∃𝑦 𝐴 = {𝑦} → (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–1-1→𝐵)) |
| 11 | 10 | imp 406 | . . 3 ⊢ ((∃𝑦 𝐴 = {𝑦} ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
| 12 | 2, 11 | jaoian 958 | . 2 ⊢ (((𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}) ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
| 13 | 1, 12 | sylanb 581 | 1 ⊢ ((∃*𝑥 𝑥 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃*wmo 2537 Vcvv 3459 ∅c0 4308 {csn 4601 ⟶wf 6527 –1-1→wf1 6528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 |
| This theorem is referenced by: thincfth 49338 |
| Copyright terms: Public domain | W3C validator |