![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1mo | Structured version Visualization version GIF version |
Description: A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
f1mo | ⊢ ((∃*𝑥 𝑥 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo0sn 47589 | . 2 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) | |
2 | f102g 47607 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) | |
3 | vex 3476 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | f1sn2g 47606 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝐹:{𝑦}⟶𝐵) → 𝐹:{𝑦}–1-1→𝐵) | |
5 | 3, 4 | mpan 686 | . . . . . 6 ⊢ (𝐹:{𝑦}⟶𝐵 → 𝐹:{𝑦}–1-1→𝐵) |
6 | feq2 6700 | . . . . . . 7 ⊢ (𝐴 = {𝑦} → (𝐹:𝐴⟶𝐵 ↔ 𝐹:{𝑦}⟶𝐵)) | |
7 | f1eq2 6784 | . . . . . . 7 ⊢ (𝐴 = {𝑦} → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:{𝑦}–1-1→𝐵)) | |
8 | 6, 7 | imbi12d 343 | . . . . . 6 ⊢ (𝐴 = {𝑦} → ((𝐹:𝐴⟶𝐵 → 𝐹:𝐴–1-1→𝐵) ↔ (𝐹:{𝑦}⟶𝐵 → 𝐹:{𝑦}–1-1→𝐵))) |
9 | 5, 8 | mpbiri 257 | . . . . 5 ⊢ (𝐴 = {𝑦} → (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–1-1→𝐵)) |
10 | 9 | exlimiv 1931 | . . . 4 ⊢ (∃𝑦 𝐴 = {𝑦} → (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–1-1→𝐵)) |
11 | 10 | imp 405 | . . 3 ⊢ ((∃𝑦 𝐴 = {𝑦} ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
12 | 2, 11 | jaoian 953 | . 2 ⊢ (((𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}) ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
13 | 1, 12 | sylanb 579 | 1 ⊢ ((∃*𝑥 𝑥 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 843 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ∃*wmo 2530 Vcvv 3472 ∅c0 4323 {csn 4629 ⟶wf 6540 –1-1→wf1 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 |
This theorem is referenced by: thincfth 47757 |
Copyright terms: Public domain | W3C validator |