Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1mo | Structured version Visualization version GIF version |
Description: A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
f1mo | ⊢ ((∃*𝑥 𝑥 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo0sn 46049 | . 2 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) | |
2 | f102g 46067 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) | |
3 | vex 3426 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | f1sn2g 46066 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝐹:{𝑦}⟶𝐵) → 𝐹:{𝑦}–1-1→𝐵) | |
5 | 3, 4 | mpan 686 | . . . . . 6 ⊢ (𝐹:{𝑦}⟶𝐵 → 𝐹:{𝑦}–1-1→𝐵) |
6 | feq2 6566 | . . . . . . 7 ⊢ (𝐴 = {𝑦} → (𝐹:𝐴⟶𝐵 ↔ 𝐹:{𝑦}⟶𝐵)) | |
7 | f1eq2 6650 | . . . . . . 7 ⊢ (𝐴 = {𝑦} → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:{𝑦}–1-1→𝐵)) | |
8 | 6, 7 | imbi12d 344 | . . . . . 6 ⊢ (𝐴 = {𝑦} → ((𝐹:𝐴⟶𝐵 → 𝐹:𝐴–1-1→𝐵) ↔ (𝐹:{𝑦}⟶𝐵 → 𝐹:{𝑦}–1-1→𝐵))) |
9 | 5, 8 | mpbiri 257 | . . . . 5 ⊢ (𝐴 = {𝑦} → (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–1-1→𝐵)) |
10 | 9 | exlimiv 1934 | . . . 4 ⊢ (∃𝑦 𝐴 = {𝑦} → (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–1-1→𝐵)) |
11 | 10 | imp 406 | . . 3 ⊢ ((∃𝑦 𝐴 = {𝑦} ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
12 | 2, 11 | jaoian 953 | . 2 ⊢ (((𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}) ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
13 | 1, 12 | sylanb 580 | 1 ⊢ ((∃*𝑥 𝑥 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃*wmo 2538 Vcvv 3422 ∅c0 4253 {csn 4558 ⟶wf 6414 –1-1→wf1 6415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: thincfth 46217 |
Copyright terms: Public domain | W3C validator |