Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1mo Structured version   Visualization version   GIF version

Theorem f1mo 48841
Description: A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
f1mo ((∃*𝑥 𝑥𝐴𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem f1mo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mo0sn 48804 . 2 (∃*𝑥 𝑥𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
2 f102g 48840 . . 3 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
3 vex 3451 . . . . . . 7 𝑦 ∈ V
4 f1sn2g 48839 . . . . . . 7 ((𝑦 ∈ V ∧ 𝐹:{𝑦}⟶𝐵) → 𝐹:{𝑦}–1-1𝐵)
53, 4mpan 690 . . . . . 6 (𝐹:{𝑦}⟶𝐵𝐹:{𝑦}–1-1𝐵)
6 feq2 6667 . . . . . . 7 (𝐴 = {𝑦} → (𝐹:𝐴𝐵𝐹:{𝑦}⟶𝐵))
7 f1eq2 6752 . . . . . . 7 (𝐴 = {𝑦} → (𝐹:𝐴1-1𝐵𝐹:{𝑦}–1-1𝐵))
86, 7imbi12d 344 . . . . . 6 (𝐴 = {𝑦} → ((𝐹:𝐴𝐵𝐹:𝐴1-1𝐵) ↔ (𝐹:{𝑦}⟶𝐵𝐹:{𝑦}–1-1𝐵)))
95, 8mpbiri 258 . . . . 5 (𝐴 = {𝑦} → (𝐹:𝐴𝐵𝐹:𝐴1-1𝐵))
109exlimiv 1930 . . . 4 (∃𝑦 𝐴 = {𝑦} → (𝐹:𝐴𝐵𝐹:𝐴1-1𝐵))
1110imp 406 . . 3 ((∃𝑦 𝐴 = {𝑦} ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
122, 11jaoian 958 . 2 (((𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}) ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
131, 12sylanb 581 1 ((∃*𝑥 𝑥𝐴𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  Vcvv 3447  c0 4296  {csn 4589  wf 6507  1-1wf1 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by:  thincfth  49441
  Copyright terms: Public domain W3C validator