MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd Structured version   Visualization version   GIF version

Theorem faclbnd 13317
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))

Proof of Theorem faclbnd
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 11581 . 2 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 oveq1 6891 . . . . . . . 8 (𝑗 = 0 → (𝑗 + 1) = (0 + 1))
32oveq2d 6900 . . . . . . 7 (𝑗 = 0 → (𝑀↑(𝑗 + 1)) = (𝑀↑(0 + 1)))
4 fveq2 6418 . . . . . . . 8 (𝑗 = 0 → (!‘𝑗) = (!‘0))
54oveq2d 6900 . . . . . . 7 (𝑗 = 0 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘0)))
63, 5breq12d 4868 . . . . . 6 (𝑗 = 0 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0))))
76imbi2d 331 . . . . 5 (𝑗 = 0 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0)))))
8 oveq1 6891 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
98oveq2d 6900 . . . . . . 7 (𝑗 = 𝑘 → (𝑀↑(𝑗 + 1)) = (𝑀↑(𝑘 + 1)))
10 fveq2 6418 . . . . . . . 8 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
1110oveq2d 6900 . . . . . . 7 (𝑗 = 𝑘 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘𝑘)))
129, 11breq12d 4868 . . . . . 6 (𝑗 = 𝑘 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))))
1312imbi2d 331 . . . . 5 (𝑗 = 𝑘 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)))))
14 oveq1 6891 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1514oveq2d 6900 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀↑(𝑗 + 1)) = (𝑀↑((𝑘 + 1) + 1)))
16 fveq2 6418 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1716oveq2d 6900 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘(𝑘 + 1))))
1815, 17breq12d 4868 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
1918imbi2d 331 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
20 oveq1 6891 . . . . . . . 8 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2120oveq2d 6900 . . . . . . 7 (𝑗 = 𝑁 → (𝑀↑(𝑗 + 1)) = (𝑀↑(𝑁 + 1)))
22 fveq2 6418 . . . . . . . 8 (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁))
2322oveq2d 6900 . . . . . . 7 (𝑗 = 𝑁 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘𝑁)))
2421, 23breq12d 4868 . . . . . 6 (𝑗 = 𝑁 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
2524imbi2d 331 . . . . 5 (𝑗 = 𝑁 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))))
26 nnre 11323 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
27 nnge1 11344 . . . . . . 7 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
28 elnnuz 11962 . . . . . . . 8 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
2928biimpi 207 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘1))
3026, 27, 29leexp2ad 13284 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑1) ≤ (𝑀𝑀))
31 0p1e1 11442 . . . . . . . 8 (0 + 1) = 1
3231oveq2i 6895 . . . . . . 7 (𝑀↑(0 + 1)) = (𝑀↑1)
3332a1i 11 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) = (𝑀↑1))
34 fac0 13303 . . . . . . . 8 (!‘0) = 1
3534oveq2i 6895 . . . . . . 7 ((𝑀𝑀) · (!‘0)) = ((𝑀𝑀) · 1)
36 nnnn0 11586 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
3726, 36reexpcld 13268 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀𝑀) ∈ ℝ)
3837recnd 10363 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀𝑀) ∈ ℂ)
3938mulid1d 10352 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑀𝑀) · 1) = (𝑀𝑀))
4035, 39syl5eq 2863 . . . . . 6 (𝑀 ∈ ℕ → ((𝑀𝑀) · (!‘0)) = (𝑀𝑀))
4130, 33, 403brtr4d 4887 . . . . 5 (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0)))
4226ad3antrrr 712 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ∈ ℝ)
43 simpllr 784 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑘 ∈ ℕ0)
44 peano2nn0 11619 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
4543, 44syl 17 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑘 + 1) ∈ ℕ0)
4642, 45reexpcld 13268 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑(𝑘 + 1)) ∈ ℝ)
4736ad3antrrr 712 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ∈ ℕ0)
4842, 47reexpcld 13268 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀𝑀) ∈ ℝ)
4943faccld 13311 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (!‘𝑘) ∈ ℕ)
5049nnred 11332 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (!‘𝑘) ∈ ℝ)
5148, 50remulcld 10365 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀𝑀) · (!‘𝑘)) ∈ ℝ)
52 nn0re 11588 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
53 peano2re 10504 . . . . . . . . . . . . . 14 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
5443, 52, 533syl 18 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ)
55 nngt0 11347 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 0 < 𝑀)
5655ad3antrrr 712 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 < 𝑀)
57 0re 10337 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
58 ltle 10421 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 < 𝑀 → 0 ≤ 𝑀))
5957, 58mpan 673 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → (0 < 𝑀 → 0 ≤ 𝑀))
6042, 56, 59sylc 65 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 ≤ 𝑀)
6142, 45, 60expge0d 13269 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 ≤ (𝑀↑(𝑘 + 1)))
62 simplr 776 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)))
63 simprr 780 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ≤ (𝑘 + 1))
6446, 51, 42, 54, 61, 60, 62, 63lemul12ad 11261 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀↑(𝑘 + 1)) · 𝑀) ≤ (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
6564anandis 660 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀↑(𝑘 + 1)) · 𝑀) ≤ (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
66 nncn 11324 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
67 expp1 13110 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
6866, 44, 67syl2an 585 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
6968adantr 468 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
70 facp1 13305 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7170adantl 469 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7271oveq2d 6900 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = ((𝑀𝑀) · ((!‘𝑘) · (𝑘 + 1))))
7338adantr 468 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀𝑀) ∈ ℂ)
74 faccl 13310 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
7574nncnd 11333 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℂ)
7675adantl 469 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
77 nn0cn 11589 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
78 peano2cn 10503 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → (𝑘 + 1) ∈ ℂ)
7977, 78syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
8079adantl 469 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
8173, 76, 80mulassd 10358 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)) = ((𝑀𝑀) · ((!‘𝑘) · (𝑘 + 1))))
8272, 81eqtr4d 2854 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
8382adantr 468 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
8465, 69, 833brtr4d 4887 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
8584exp32 409 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀 ≤ (𝑘 + 1) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
8685com23 86 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
87 nn0ltp1le 11721 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
8844, 36, 87syl2anr 586 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
89 peano2nn0 11619 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ0 → ((𝑘 + 1) + 1) ∈ ℕ0)
9044, 89syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((𝑘 + 1) + 1) ∈ ℕ0)
91 reexpcl 13120 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((𝑘 + 1) + 1) ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9226, 90, 91syl2an 585 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9392adantr 468 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9437ad2antrr 708 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀𝑀) ∈ ℝ)
9544faccld 13311 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℕ)
9695nnred 11332 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℝ)
97 remulcl 10316 . . . . . . . . . . . . . 14 (((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
9837, 96, 97syl2an 585 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
9998adantr 468 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
10026ad2antrr 708 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ ℝ)
10127ad2antrr 708 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 1 ≤ 𝑀)
102 simpr 473 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ≤ 𝑀)
10390ad2antlr 709 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ∈ ℕ0)
104103nn0zd 11766 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ∈ ℤ)
105 nnz 11685 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
106105ad2antrr 708 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ ℤ)
107 eluz 11938 . . . . . . . . . . . . . . 15 ((((𝑘 + 1) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)) ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
108104, 106, 107syl2anc 575 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)) ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
109102, 108mpbird 248 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)))
110100, 101, 109leexp2ad 13284 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ≤ (𝑀𝑀))
11137, 96anim12i 602 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ))
112 nn0re 11588 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
113 id 22 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
114 nn0ge0 11604 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
115112, 113, 114expge0d 13269 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → 0 ≤ (𝑀𝑀))
11636, 115syl 17 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 ≤ (𝑀𝑀))
11795nnge1d 11361 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → 1 ≤ (!‘(𝑘 + 1)))
118116, 117anim12i 602 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (0 ≤ (𝑀𝑀) ∧ 1 ≤ (!‘(𝑘 + 1))))
119 lemulge11 11180 . . . . . . . . . . . . . 14 ((((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) ∧ (0 ≤ (𝑀𝑀) ∧ 1 ≤ (!‘(𝑘 + 1)))) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
120111, 118, 119syl2anc 575 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
121120adantr 468 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
12293, 94, 99, 110, 121letrd 10489 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
123122ex 399 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((𝑘 + 1) + 1) ≤ 𝑀 → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
12488, 123sylbid 231 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
125124a1dd 50 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
12652, 53syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
127 lelttric 10439 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑀 ≤ (𝑘 + 1) ∨ (𝑘 + 1) < 𝑀))
12826, 126, 127syl2an 585 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) ∨ (𝑘 + 1) < 𝑀))
12986, 125, 128mpjaod 878 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
130129expcom 400 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
131130a2d 29 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) → (𝑀 ∈ ℕ → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
1327, 13, 19, 25, 41, 131nn0ind 11758 . . . 4 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
133132impcom 396 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
134 faccl 13310 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
135134nnnn0d 11637 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ0)
136135nn0ge0d 11640 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
137 nn0p1nn 11618 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1381370expd 13267 . . . . . 6 (𝑁 ∈ ℕ0 → (0↑(𝑁 + 1)) = 0)
139 0exp0e1 13108 . . . . . . . 8 (0↑0) = 1
140139oveq1i 6894 . . . . . . 7 ((0↑0) · (!‘𝑁)) = (1 · (!‘𝑁))
141134nncnd 11333 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
142141mulid2d 10353 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) = (!‘𝑁))
143140, 142syl5eq 2863 . . . . . 6 (𝑁 ∈ ℕ0 → ((0↑0) · (!‘𝑁)) = (!‘𝑁))
144136, 138, 1433brtr4d 4887 . . . . 5 (𝑁 ∈ ℕ0 → (0↑(𝑁 + 1)) ≤ ((0↑0) · (!‘𝑁)))
145 oveq1 6891 . . . . . 6 (𝑀 = 0 → (𝑀↑(𝑁 + 1)) = (0↑(𝑁 + 1)))
146 oveq12 6893 . . . . . . . 8 ((𝑀 = 0 ∧ 𝑀 = 0) → (𝑀𝑀) = (0↑0))
147146anidms 558 . . . . . . 7 (𝑀 = 0 → (𝑀𝑀) = (0↑0))
148147oveq1d 6899 . . . . . 6 (𝑀 = 0 → ((𝑀𝑀) · (!‘𝑁)) = ((0↑0) · (!‘𝑁)))
149145, 148breq12d 4868 . . . . 5 (𝑀 = 0 → ((𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑(𝑁 + 1)) ≤ ((0↑0) · (!‘𝑁))))
150144, 149syl5ibr 237 . . . 4 (𝑀 = 0 → (𝑁 ∈ ℕ0 → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
151150imp 395 . . 3 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
152133, 151jaoian 970 . 2 (((𝑀 ∈ ℕ ∨ 𝑀 = 0) ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
1531, 152sylanb 572 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 865   = wceq 1637  wcel 2157   class class class wbr 4855  cfv 6111  (class class class)co 6884  cc 10229  cr 10230  0cc0 10231  1c1 10232   + caddc 10234   · cmul 10236   < clt 10369  cle 10370  cn 11315  0cn0 11579  cz 11663  cuz 11924  cexp 13103  !cfa 13300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-cnex 10287  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-om 7306  df-2nd 7409  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-er 7989  df-en 8203  df-dom 8204  df-sdom 8205  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-div 10980  df-nn 11316  df-n0 11580  df-z 11664  df-uz 11925  df-rp 12067  df-seq 13045  df-exp 13104  df-fac 13301
This theorem is referenced by:  faclbnd2  13318  faclbnd3  13319
  Copyright terms: Public domain W3C validator