| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fzsplit1nn0 | Structured version Visualization version GIF version | ||
| Description: Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| fzsplit1nn0 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12444 | . . 3 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
| 2 | 1zzd 12564 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 1 ∈ ℤ) | |
| 3 | nn0z 12554 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
| 4 | 3 | ad2antrl 728 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐵 ∈ ℤ) |
| 5 | nnz 12550 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℤ) |
| 7 | nnge1 12214 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 1 ≤ 𝐴) |
| 9 | simprr 772 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ≤ 𝐵) | |
| 10 | 2, 4, 6, 8, 9 | elfzd 13476 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ (1...𝐵)) |
| 11 | fzsplit 13511 | . . . . . 6 ⊢ (𝐴 ∈ (1...𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
| 13 | uncom 4121 | . . . . . 6 ⊢ ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)) = (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) | |
| 14 | oveq1 7394 | . . . . . . . . . . 11 ⊢ (𝐴 = 0 → (𝐴 + 1) = (0 + 1)) | |
| 15 | 14 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (𝐴 + 1) = (0 + 1)) |
| 16 | 0p1e1 12303 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
| 17 | 15, 16 | eqtrdi 2780 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (𝐴 + 1) = 1) |
| 18 | 17 | oveq1d 7402 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → ((𝐴 + 1)...𝐵) = (1...𝐵)) |
| 19 | oveq2 7395 | . . . . . . . . . 10 ⊢ (𝐴 = 0 → (1...𝐴) = (1...0)) | |
| 20 | 19 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐴) = (1...0)) |
| 21 | fz10 13506 | . . . . . . . . 9 ⊢ (1...0) = ∅ | |
| 22 | 20, 21 | eqtrdi 2780 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐴) = ∅) |
| 23 | 18, 22 | uneq12d 4132 | . . . . . . 7 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = ((1...𝐵) ∪ ∅)) |
| 24 | un0 4357 | . . . . . . 7 ⊢ ((1...𝐵) ∪ ∅) = (1...𝐵) | |
| 25 | 23, 24 | eqtrdi 2780 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = (1...𝐵)) |
| 26 | 13, 25 | eqtr2id 2777 | . . . . 5 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
| 27 | 12, 26 | jaoian 958 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
| 28 | 27 | ex 412 | . . 3 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → ((𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))) |
| 29 | 1, 28 | sylbi 217 | . 2 ⊢ (𝐴 ∈ ℕ0 → ((𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))) |
| 30 | 29 | 3impib 1116 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ∅c0 4296 class class class wbr 5107 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 ≤ cle 11209 ℕcn 12186 ℕ0cn0 12442 ℤcz 12529 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: eldioph2lem1 42748 |
| Copyright terms: Public domain | W3C validator |