Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzsplit1nn0 Structured version   Visualization version   GIF version

Theorem fzsplit1nn0 42765
Description: Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
fzsplit1nn0 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))

Proof of Theorem fzsplit1nn0
StepHypRef Expression
1 elnn0 12528 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 1zzd 12648 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 1 ∈ ℤ)
3 nn0z 12638 . . . . . . . 8 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
43ad2antrl 728 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 𝐵 ∈ ℤ)
5 nnz 12634 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
65adantr 480 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 𝐴 ∈ ℤ)
7 nnge1 12294 . . . . . . . 8 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
87adantr 480 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 1 ≤ 𝐴)
9 simprr 773 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 𝐴𝐵)
102, 4, 6, 8, 9elfzd 13555 . . . . . 6 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 𝐴 ∈ (1...𝐵))
11 fzsplit 13590 . . . . . 6 (𝐴 ∈ (1...𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
1210, 11syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
13 uncom 4158 . . . . . 6 ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)) = (((𝐴 + 1)...𝐵) ∪ (1...𝐴))
14 oveq1 7438 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴 + 1) = (0 + 1))
1514adantr 480 . . . . . . . . . 10 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (𝐴 + 1) = (0 + 1))
16 0p1e1 12388 . . . . . . . . . 10 (0 + 1) = 1
1715, 16eqtrdi 2793 . . . . . . . . 9 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (𝐴 + 1) = 1)
1817oveq1d 7446 . . . . . . . 8 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → ((𝐴 + 1)...𝐵) = (1...𝐵))
19 oveq2 7439 . . . . . . . . . 10 (𝐴 = 0 → (1...𝐴) = (1...0))
2019adantr 480 . . . . . . . . 9 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐴) = (1...0))
21 fz10 13585 . . . . . . . . 9 (1...0) = ∅
2220, 21eqtrdi 2793 . . . . . . . 8 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐴) = ∅)
2318, 22uneq12d 4169 . . . . . . 7 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = ((1...𝐵) ∪ ∅))
24 un0 4394 . . . . . . 7 ((1...𝐵) ∪ ∅) = (1...𝐵)
2523, 24eqtrdi 2793 . . . . . 6 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = (1...𝐵))
2613, 25eqtr2id 2790 . . . . 5 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
2712, 26jaoian 959 . . . 4 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
2827ex 412 . . 3 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → ((𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))))
291, 28sylbi 217 . 2 (𝐴 ∈ ℕ0 → ((𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))))
30293impib 1117 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  cun 3949  c0 4333   class class class wbr 5143  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  cle 11296  cn 12266  0cn0 12526  cz 12613  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  eldioph2lem1  42771
  Copyright terms: Public domain W3C validator