![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzsplit1nn0 | Structured version Visualization version GIF version |
Description: Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.) |
Ref | Expression |
---|---|
fzsplit1nn0 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12476 | . . 3 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
2 | 1zzd 12595 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 1 ∈ ℤ) | |
3 | nn0z 12585 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
4 | 3 | ad2antrl 726 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐵 ∈ ℤ) |
5 | nnz 12581 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
6 | 5 | adantr 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℤ) |
7 | nnge1 12242 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
8 | 7 | adantr 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 1 ≤ 𝐴) |
9 | simprr 771 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ≤ 𝐵) | |
10 | 2, 4, 6, 8, 9 | elfzd 13494 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ (1...𝐵)) |
11 | fzsplit 13529 | . . . . . 6 ⊢ (𝐴 ∈ (1...𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
13 | uncom 4153 | . . . . . 6 ⊢ ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)) = (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) | |
14 | oveq1 7418 | . . . . . . . . . . 11 ⊢ (𝐴 = 0 → (𝐴 + 1) = (0 + 1)) | |
15 | 14 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (𝐴 + 1) = (0 + 1)) |
16 | 0p1e1 12336 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
17 | 15, 16 | eqtrdi 2788 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (𝐴 + 1) = 1) |
18 | 17 | oveq1d 7426 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → ((𝐴 + 1)...𝐵) = (1...𝐵)) |
19 | oveq2 7419 | . . . . . . . . . 10 ⊢ (𝐴 = 0 → (1...𝐴) = (1...0)) | |
20 | 19 | adantr 481 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐴) = (1...0)) |
21 | fz10 13524 | . . . . . . . . 9 ⊢ (1...0) = ∅ | |
22 | 20, 21 | eqtrdi 2788 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐴) = ∅) |
23 | 18, 22 | uneq12d 4164 | . . . . . . 7 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = ((1...𝐵) ∪ ∅)) |
24 | un0 4390 | . . . . . . 7 ⊢ ((1...𝐵) ∪ ∅) = (1...𝐵) | |
25 | 23, 24 | eqtrdi 2788 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = (1...𝐵)) |
26 | 13, 25 | eqtr2id 2785 | . . . . 5 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
27 | 12, 26 | jaoian 955 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
28 | 27 | ex 413 | . . 3 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → ((𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))) |
29 | 1, 28 | sylbi 216 | . 2 ⊢ (𝐴 ∈ ℕ0 → ((𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))) |
30 | 29 | 3impib 1116 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∪ cun 3946 ∅c0 4322 class class class wbr 5148 (class class class)co 7411 0cc0 11112 1c1 11113 + caddc 11115 ≤ cle 11251 ℕcn 12214 ℕ0cn0 12474 ℤcz 12560 ...cfz 13486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-n0 12475 df-z 12561 df-uz 12825 df-fz 13487 |
This theorem is referenced by: eldioph2lem1 41586 |
Copyright terms: Public domain | W3C validator |