![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzsplit1nn0 | Structured version Visualization version GIF version |
Description: Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.) |
Ref | Expression |
---|---|
fzsplit1nn0 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11707 | . . 3 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
2 | nnge1 11466 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
3 | 2 | adantr 473 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 1 ≤ 𝐴) |
4 | simprr 761 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ≤ 𝐵) | |
5 | nnz 11815 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
6 | 5 | adantr 473 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℤ) |
7 | 1zzd 11824 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 1 ∈ ℤ) | |
8 | nn0z 11816 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
9 | 8 | ad2antrl 716 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐵 ∈ ℤ) |
10 | elfz 12712 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ (1...𝐵) ↔ (1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | |
11 | 6, 7, 9, 10 | syl3anc 1352 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (𝐴 ∈ (1...𝐵) ↔ (1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
12 | 3, 4, 11 | mpbir2and 701 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ (1...𝐵)) |
13 | fzsplit 12747 | . . . . . 6 ⊢ (𝐴 ∈ (1...𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
15 | uncom 4011 | . . . . . 6 ⊢ ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)) = (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) | |
16 | oveq1 6981 | . . . . . . . . . . 11 ⊢ (𝐴 = 0 → (𝐴 + 1) = (0 + 1)) | |
17 | 16 | adantr 473 | . . . . . . . . . 10 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (𝐴 + 1) = (0 + 1)) |
18 | 0p1e1 11567 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
19 | 17, 18 | syl6eq 2823 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (𝐴 + 1) = 1) |
20 | 19 | oveq1d 6989 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → ((𝐴 + 1)...𝐵) = (1...𝐵)) |
21 | oveq2 6982 | . . . . . . . . . 10 ⊢ (𝐴 = 0 → (1...𝐴) = (1...0)) | |
22 | 21 | adantr 473 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐴) = (1...0)) |
23 | fz10 12742 | . . . . . . . . 9 ⊢ (1...0) = ∅ | |
24 | 22, 23 | syl6eq 2823 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐴) = ∅) |
25 | 20, 24 | uneq12d 4022 | . . . . . . 7 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = ((1...𝐵) ∪ ∅)) |
26 | un0 4224 | . . . . . . 7 ⊢ ((1...𝐵) ∪ ∅) = (1...𝐵) | |
27 | 25, 26 | syl6eq 2823 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = (1...𝐵)) |
28 | 15, 27 | syl5req 2820 | . . . . 5 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
29 | 14, 28 | jaoian 940 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
30 | 29 | ex 405 | . . 3 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → ((𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))) |
31 | 1, 30 | sylbi 209 | . 2 ⊢ (𝐴 ∈ ℕ0 → ((𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))) |
32 | 31 | 3impib 1097 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 834 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ∪ cun 3820 ∅c0 4172 class class class wbr 4925 (class class class)co 6974 0cc0 10333 1c1 10334 + caddc 10336 ≤ cle 10473 ℕcn 11437 ℕ0cn0 11705 ℤcz 11791 ...cfz 12706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-n0 11706 df-z 11792 df-uz 12057 df-fz 12707 |
This theorem is referenced by: eldioph2lem1 38790 |
Copyright terms: Public domain | W3C validator |