Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzsplit1nn0 Structured version   Visualization version   GIF version

Theorem fzsplit1nn0 42727
Description: Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
fzsplit1nn0 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))

Proof of Theorem fzsplit1nn0
StepHypRef Expression
1 elnn0 12404 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 1zzd 12524 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 1 ∈ ℤ)
3 nn0z 12514 . . . . . . . 8 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
43ad2antrl 728 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 𝐵 ∈ ℤ)
5 nnz 12510 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
65adantr 480 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 𝐴 ∈ ℤ)
7 nnge1 12174 . . . . . . . 8 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
87adantr 480 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 1 ≤ 𝐴)
9 simprr 772 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 𝐴𝐵)
102, 4, 6, 8, 9elfzd 13436 . . . . . 6 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 𝐴 ∈ (1...𝐵))
11 fzsplit 13471 . . . . . 6 (𝐴 ∈ (1...𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
1210, 11syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
13 uncom 4111 . . . . . 6 ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)) = (((𝐴 + 1)...𝐵) ∪ (1...𝐴))
14 oveq1 7360 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴 + 1) = (0 + 1))
1514adantr 480 . . . . . . . . . 10 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (𝐴 + 1) = (0 + 1))
16 0p1e1 12263 . . . . . . . . . 10 (0 + 1) = 1
1715, 16eqtrdi 2780 . . . . . . . . 9 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (𝐴 + 1) = 1)
1817oveq1d 7368 . . . . . . . 8 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → ((𝐴 + 1)...𝐵) = (1...𝐵))
19 oveq2 7361 . . . . . . . . . 10 (𝐴 = 0 → (1...𝐴) = (1...0))
2019adantr 480 . . . . . . . . 9 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐴) = (1...0))
21 fz10 13466 . . . . . . . . 9 (1...0) = ∅
2220, 21eqtrdi 2780 . . . . . . . 8 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐴) = ∅)
2318, 22uneq12d 4122 . . . . . . 7 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = ((1...𝐵) ∪ ∅))
24 un0 4347 . . . . . . 7 ((1...𝐵) ∪ ∅) = (1...𝐵)
2523, 24eqtrdi 2780 . . . . . 6 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = (1...𝐵))
2613, 25eqtr2id 2777 . . . . 5 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
2712, 26jaoian 958 . . . 4 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
2827ex 412 . . 3 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → ((𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))))
291, 28sylbi 217 . 2 (𝐴 ∈ ℕ0 → ((𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))))
30293impib 1116 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cun 3903  c0 4286   class class class wbr 5095  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031  cle 11169  cn 12146  0cn0 12402  cz 12489  ...cfz 13428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429
This theorem is referenced by:  eldioph2lem1  42733
  Copyright terms: Public domain W3C validator