![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xaddnepnf | Structured version Visualization version GIF version |
Description: Closure of extended real addition in the subset ℝ* / {+∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddnepnf | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnepnf 12263 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) | |
2 | xrnepnf 12263 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = -∞)) | |
3 | rexadd 12375 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | |
4 | readdcl 10355 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
5 | 3, 4 | eqeltrd 2859 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ∈ ℝ) |
6 | 5 | renepnfd 10427 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ≠ +∞) |
7 | oveq2 6930 | . . . . . . 7 ⊢ (𝐵 = -∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 -∞)) | |
8 | rexr 10422 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
9 | renepnf 10424 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
10 | xaddmnf1 12371 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞) | |
11 | 8, 9, 10 | syl2anc 579 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞) = -∞) |
12 | 7, 11 | sylan9eqr 2836 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = -∞) |
13 | mnfnepnf 10433 | . . . . . . 7 ⊢ -∞ ≠ +∞ | |
14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -∞ ≠ +∞) |
15 | 12, 14 | eqnetrd 3036 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) ≠ +∞) |
16 | 6, 15 | jaodan 943 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = -∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
17 | 2, 16 | sylan2b 587 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
18 | oveq1 6929 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵)) | |
19 | xaddmnf2 12372 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞) | |
20 | 18, 19 | sylan9eq 2834 | . . . 4 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) = -∞) |
21 | 13 | a1i 11 | . . . 4 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → -∞ ≠ +∞) |
22 | 20, 21 | eqnetrd 3036 | . . 3 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
23 | 17, 22 | jaoian 942 | . 2 ⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
24 | 1, 23 | sylanb 576 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∨ wo 836 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 (class class class)co 6922 ℝcr 10271 + caddc 10275 +∞cpnf 10408 -∞cmnf 10409 ℝ*cxr 10410 +𝑒 cxad 12255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-i2m1 10340 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-xadd 12258 |
This theorem is referenced by: xlt2add 12402 |
Copyright terms: Public domain | W3C validator |