| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddnepnf | Structured version Visualization version GIF version | ||
| Description: Closure of extended real addition in the subset ℝ* / {+∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddnepnf | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnepnf 13134 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) | |
| 2 | xrnepnf 13134 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = -∞)) | |
| 3 | rexadd 13248 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | |
| 4 | readdcl 11212 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 5 | 3, 4 | eqeltrd 2834 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ∈ ℝ) |
| 6 | 5 | renepnfd 11286 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| 7 | oveq2 7413 | . . . . . . 7 ⊢ (𝐵 = -∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 -∞)) | |
| 8 | rexr 11281 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 9 | renepnf 11283 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 10 | xaddmnf1 13244 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞) = -∞) |
| 12 | 7, 11 | sylan9eqr 2792 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = -∞) |
| 13 | mnfnepnf 11291 | . . . . . . 7 ⊢ -∞ ≠ +∞ | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -∞ ≠ +∞) |
| 15 | 12, 14 | eqnetrd 2999 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| 16 | 6, 15 | jaodan 959 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = -∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| 17 | 2, 16 | sylan2b 594 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| 18 | oveq1 7412 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵)) | |
| 19 | xaddmnf2 13245 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞) | |
| 20 | 18, 19 | sylan9eq 2790 | . . . 4 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) = -∞) |
| 21 | 13 | a1i 11 | . . . 4 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → -∞ ≠ +∞) |
| 22 | 20, 21 | eqnetrd 2999 | . . 3 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| 23 | 17, 22 | jaoian 958 | . 2 ⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| 24 | 1, 23 | sylanb 581 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 (class class class)co 7405 ℝcr 11128 + caddc 11132 +∞cpnf 11266 -∞cmnf 11267 ℝ*cxr 11268 +𝑒 cxad 13126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-i2m1 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-xadd 13129 |
| This theorem is referenced by: xlt2add 13276 |
| Copyright terms: Public domain | W3C validator |