MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddnepnf Structured version   Visualization version   GIF version

Theorem xaddnepnf 13136
Description: Closure of extended real addition in the subset * / {+∞}. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddnepnf (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞)

Proof of Theorem xaddnepnf
StepHypRef Expression
1 xrnepnf 13017 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞))
2 xrnepnf 13017 . . . 4 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
3 rexadd 13131 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
4 readdcl 11089 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
53, 4eqeltrd 2831 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ∈ ℝ)
65renepnfd 11163 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ≠ +∞)
7 oveq2 7354 . . . . . . 7 (𝐵 = -∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 -∞))
8 rexr 11158 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
9 renepnf 11160 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
10 xaddmnf1 13127 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
118, 9, 10syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞) = -∞)
127, 11sylan9eqr 2788 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
13 mnfnepnf 11168 . . . . . . 7 -∞ ≠ +∞
1413a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -∞ ≠ +∞)
1512, 14eqnetrd 2995 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) ≠ +∞)
166, 15jaodan 959 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = -∞)) → (𝐴 +𝑒 𝐵) ≠ +∞)
172, 16sylan2b 594 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞)
18 oveq1 7353 . . . . 5 (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
19 xaddmnf2 13128 . . . . 5 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
2018, 19sylan9eq 2786 . . . 4 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) = -∞)
2113a1i 11 . . . 4 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → -∞ ≠ +∞)
2220, 21eqnetrd 2995 . . 3 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞)
2317, 22jaoian 958 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞)
241, 23sylanb 581 1 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  (class class class)co 7346  cr 11005   + caddc 11009  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   +𝑒 cxad 13009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-i2m1 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-xadd 13012
This theorem is referenced by:  xlt2add  13159
  Copyright terms: Public domain W3C validator