|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > xaddnepnf | Structured version Visualization version GIF version | ||
| Description: Closure of extended real addition in the subset ℝ* / {+∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| xaddnepnf | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xrnepnf 13160 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) | |
| 2 | xrnepnf 13160 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = -∞)) | |
| 3 | rexadd 13274 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | |
| 4 | readdcl 11238 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 5 | 3, 4 | eqeltrd 2841 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ∈ ℝ) | 
| 6 | 5 | renepnfd 11312 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ≠ +∞) | 
| 7 | oveq2 7439 | . . . . . . 7 ⊢ (𝐵 = -∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 -∞)) | |
| 8 | rexr 11307 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 9 | renepnf 11309 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 10 | xaddmnf1 13270 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞) = -∞) | 
| 12 | 7, 11 | sylan9eqr 2799 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = -∞) | 
| 13 | mnfnepnf 11317 | . . . . . . 7 ⊢ -∞ ≠ +∞ | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -∞ ≠ +∞) | 
| 15 | 12, 14 | eqnetrd 3008 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) ≠ +∞) | 
| 16 | 6, 15 | jaodan 960 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = -∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) | 
| 17 | 2, 16 | sylan2b 594 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) | 
| 18 | oveq1 7438 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵)) | |
| 19 | xaddmnf2 13271 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞) | |
| 20 | 18, 19 | sylan9eq 2797 | . . . 4 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) = -∞) | 
| 21 | 13 | a1i 11 | . . . 4 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → -∞ ≠ +∞) | 
| 22 | 20, 21 | eqnetrd 3008 | . . 3 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) | 
| 23 | 17, 22 | jaoian 959 | . 2 ⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) | 
| 24 | 1, 23 | sylanb 581 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 (class class class)co 7431 ℝcr 11154 + caddc 11158 +∞cpnf 11292 -∞cmnf 11293 ℝ*cxr 11294 +𝑒 cxad 13152 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-i2m1 11223 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-xadd 13155 | 
| This theorem is referenced by: xlt2add 13302 | 
| Copyright terms: Public domain | W3C validator |