| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddnepnf | Structured version Visualization version GIF version | ||
| Description: Closure of extended real addition in the subset ℝ* / {+∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddnepnf | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnepnf 13078 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) | |
| 2 | xrnepnf 13078 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = -∞)) | |
| 3 | rexadd 13192 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | |
| 4 | readdcl 11151 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 5 | 3, 4 | eqeltrd 2828 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ∈ ℝ) |
| 6 | 5 | renepnfd 11225 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| 7 | oveq2 7395 | . . . . . . 7 ⊢ (𝐵 = -∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 -∞)) | |
| 8 | rexr 11220 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 9 | renepnf 11222 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 10 | xaddmnf1 13188 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞) = -∞) |
| 12 | 7, 11 | sylan9eqr 2786 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = -∞) |
| 13 | mnfnepnf 11230 | . . . . . . 7 ⊢ -∞ ≠ +∞ | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -∞ ≠ +∞) |
| 15 | 12, 14 | eqnetrd 2992 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| 16 | 6, 15 | jaodan 959 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = -∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| 17 | 2, 16 | sylan2b 594 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| 18 | oveq1 7394 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵)) | |
| 19 | xaddmnf2 13189 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞) | |
| 20 | 18, 19 | sylan9eq 2784 | . . . 4 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) = -∞) |
| 21 | 13 | a1i 11 | . . . 4 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → -∞ ≠ +∞) |
| 22 | 20, 21 | eqnetrd 2992 | . . 3 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| 23 | 17, 22 | jaoian 958 | . 2 ⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| 24 | 1, 23 | sylanb 581 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℝcr 11067 + caddc 11071 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 +𝑒 cxad 13070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-xadd 13073 |
| This theorem is referenced by: xlt2add 13220 |
| Copyright terms: Public domain | W3C validator |