| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddnemnf | Structured version Visualization version GIF version | ||
| Description: Closure of extended real addition in the subset ℝ* / {-∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddnemnf | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnemnf 13141 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | |
| 2 | xrnemnf 13141 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) | |
| 3 | rexadd 13256 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | |
| 4 | readdcl 11220 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 5 | 3, 4 | eqeltrd 2833 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ∈ ℝ) |
| 6 | 5 | renemnfd 11295 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| 7 | oveq2 7421 | . . . . . . 7 ⊢ (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞)) | |
| 8 | rexr 11289 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 9 | renemnf 11292 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
| 10 | xaddpnf1 13250 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 +∞) = +∞) |
| 12 | 7, 11 | sylan9eqr 2791 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞) |
| 13 | pnfnemnf 11298 | . . . . . . 7 ⊢ +∞ ≠ -∞ | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → +∞ ≠ -∞) |
| 15 | 12, 14 | eqnetrd 2998 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| 16 | 6, 15 | jaodan 959 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| 17 | 2, 16 | sylan2b 594 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| 18 | oveq1 7420 | . . . . 5 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵)) | |
| 19 | xaddpnf2 13251 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞) | |
| 20 | 18, 19 | sylan9eq 2789 | . . . 4 ⊢ ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) = +∞) |
| 21 | 13 | a1i 11 | . . . 4 ⊢ ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → +∞ ≠ -∞) |
| 22 | 20, 21 | eqnetrd 2998 | . . 3 ⊢ ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| 23 | 17, 22 | jaoian 958 | . 2 ⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| 24 | 1, 23 | sylanb 581 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 (class class class)co 7413 ℝcr 11136 + caddc 11140 +∞cpnf 11274 -∞cmnf 11275 ℝ*cxr 11276 +𝑒 cxad 13134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-i2m1 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-xadd 13137 |
| This theorem is referenced by: xaddass 13273 xlt2add 13284 xadd4d 13327 xrs1mnd 21384 |
| Copyright terms: Public domain | W3C validator |