MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddnemnf Structured version   Visualization version   GIF version

Theorem xaddnemnf 13217
Description: Closure of extended real addition in the subset * / {-∞}. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddnemnf (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)

Proof of Theorem xaddnemnf
StepHypRef Expression
1 xrnemnf 13099 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
2 xrnemnf 13099 . . . 4 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
3 rexadd 13213 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
4 readdcl 11195 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
53, 4eqeltrd 2833 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ∈ ℝ)
65renemnfd 11268 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ≠ -∞)
7 oveq2 7419 . . . . . . 7 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
8 rexr 11262 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
9 renemnf 11265 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
10 xaddpnf1 13207 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
118, 9, 10syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 +∞) = +∞)
127, 11sylan9eqr 2794 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
13 pnfnemnf 11271 . . . . . . 7 +∞ ≠ -∞
1413a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → +∞ ≠ -∞)
1512, 14eqnetrd 3008 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) ≠ -∞)
166, 15jaodan 956 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
172, 16sylan2b 594 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
18 oveq1 7418 . . . . 5 (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
19 xaddpnf2 13208 . . . . 5 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
2018, 19sylan9eq 2792 . . . 4 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) = +∞)
2113a1i 11 . . . 4 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → +∞ ≠ -∞)
2220, 21eqnetrd 3008 . . 3 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
2317, 22jaoian 955 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
241, 23sylanb 581 1 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  (class class class)co 7411  cr 11111   + caddc 11115  +∞cpnf 11247  -∞cmnf 11248  *cxr 11249   +𝑒 cxad 13092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-i2m1 11180
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11252  df-mnf 11253  df-xr 11254  df-xadd 13095
This theorem is referenced by:  xaddass  13230  xlt2add  13241  xadd4d  13284  xrs1mnd  20989
  Copyright terms: Public domain W3C validator