MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddnemnf Structured version   Visualization version   GIF version

Theorem xaddnemnf 13220
Description: Closure of extended real addition in the subset * / {-∞}. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddnemnf (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)

Proof of Theorem xaddnemnf
StepHypRef Expression
1 xrnemnf 13102 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
2 xrnemnf 13102 . . . 4 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
3 rexadd 13216 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
4 readdcl 11196 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
53, 4eqeltrd 2832 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ∈ ℝ)
65renemnfd 11271 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ≠ -∞)
7 oveq2 7420 . . . . . . 7 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
8 rexr 11265 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
9 renemnf 11268 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
10 xaddpnf1 13210 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
118, 9, 10syl2anc 583 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 +∞) = +∞)
127, 11sylan9eqr 2793 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
13 pnfnemnf 11274 . . . . . . 7 +∞ ≠ -∞
1413a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → +∞ ≠ -∞)
1512, 14eqnetrd 3007 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) ≠ -∞)
166, 15jaodan 955 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
172, 16sylan2b 593 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
18 oveq1 7419 . . . . 5 (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
19 xaddpnf2 13211 . . . . 5 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
2018, 19sylan9eq 2791 . . . 4 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) = +∞)
2113a1i 11 . . . 4 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → +∞ ≠ -∞)
2220, 21eqnetrd 3007 . . 3 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
2317, 22jaoian 954 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
241, 23sylanb 580 1 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844   = wceq 1540  wcel 2105  wne 2939  (class class class)co 7412  cr 11112   + caddc 11116  +∞cpnf 11250  -∞cmnf 11251  *cxr 11252   +𝑒 cxad 13095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-i2m1 11181
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-xadd 13098
This theorem is referenced by:  xaddass  13233  xlt2add  13244  xadd4d  13287  xrs1mnd  21184
  Copyright terms: Public domain W3C validator