Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xaddnemnf | Structured version Visualization version GIF version |
Description: Closure of extended real addition in the subset ℝ* / {-∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddnemnf | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnemnf 12739 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | |
2 | xrnemnf 12739 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) | |
3 | rexadd 12852 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | |
4 | readdcl 10842 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
5 | 3, 4 | eqeltrd 2840 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ∈ ℝ) |
6 | 5 | renemnfd 10915 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ≠ -∞) |
7 | oveq2 7243 | . . . . . . 7 ⊢ (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞)) | |
8 | rexr 10909 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
9 | renemnf 10912 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
10 | xaddpnf1 12846 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) | |
11 | 8, 9, 10 | syl2anc 587 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 +∞) = +∞) |
12 | 7, 11 | sylan9eqr 2802 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞) |
13 | pnfnemnf 10918 | . . . . . . 7 ⊢ +∞ ≠ -∞ | |
14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → +∞ ≠ -∞) |
15 | 12, 14 | eqnetrd 3011 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) ≠ -∞) |
16 | 6, 15 | jaodan 958 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
17 | 2, 16 | sylan2b 597 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
18 | oveq1 7242 | . . . . 5 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵)) | |
19 | xaddpnf2 12847 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞) | |
20 | 18, 19 | sylan9eq 2800 | . . . 4 ⊢ ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) = +∞) |
21 | 13 | a1i 11 | . . . 4 ⊢ ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → +∞ ≠ -∞) |
22 | 20, 21 | eqnetrd 3011 | . . 3 ⊢ ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
23 | 17, 22 | jaoian 957 | . 2 ⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
24 | 1, 23 | sylanb 584 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 847 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 (class class class)co 7235 ℝcr 10758 + caddc 10762 +∞cpnf 10894 -∞cmnf 10895 ℝ*cxr 10896 +𝑒 cxad 12732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-i2m1 10827 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5472 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-ov 7238 df-oprab 7239 df-mpo 7240 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-pnf 10899 df-mnf 10900 df-xr 10901 df-xadd 12735 |
This theorem is referenced by: xaddass 12869 xlt2add 12880 xadd4d 12923 xrs1mnd 20434 |
Copyright terms: Public domain | W3C validator |