MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  degltlem1 Structured version   Visualization version   GIF version

Theorem degltlem1 26111
Description: Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Assertion
Ref Expression
degltlem1 ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))

Proof of Theorem degltlem1
StepHypRef Expression
1 elun 4153 . 2 (𝑋 ∈ (ℕ0 ∪ {-∞}) ↔ (𝑋 ∈ ℕ0𝑋 ∈ {-∞}))
2 nn0z 12638 . . . 4 (𝑋 ∈ ℕ0𝑋 ∈ ℤ)
3 zltlem1 12670 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
42, 3sylan 580 . . 3 ((𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
5 zre 12617 . . . . . . 7 (𝑌 ∈ ℤ → 𝑌 ∈ ℝ)
65mnfltd 13166 . . . . . 6 (𝑌 ∈ ℤ → -∞ < 𝑌)
7 peano2zm 12660 . . . . . . . . 9 (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℤ)
87zred 12722 . . . . . . . 8 (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℝ)
98rexrd 11311 . . . . . . 7 (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℝ*)
10 mnfle 13177 . . . . . . 7 ((𝑌 − 1) ∈ ℝ* → -∞ ≤ (𝑌 − 1))
119, 10syl 17 . . . . . 6 (𝑌 ∈ ℤ → -∞ ≤ (𝑌 − 1))
126, 112thd 265 . . . . 5 (𝑌 ∈ ℤ → (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1)))
13 elsni 4643 . . . . . 6 (𝑋 ∈ {-∞} → 𝑋 = -∞)
14 breq1 5146 . . . . . . 7 (𝑋 = -∞ → (𝑋 < 𝑌 ↔ -∞ < 𝑌))
15 breq1 5146 . . . . . . 7 (𝑋 = -∞ → (𝑋 ≤ (𝑌 − 1) ↔ -∞ ≤ (𝑌 − 1)))
1614, 15bibi12d 345 . . . . . 6 (𝑋 = -∞ → ((𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)) ↔ (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1))))
1713, 16syl 17 . . . . 5 (𝑋 ∈ {-∞} → ((𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)) ↔ (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1))))
1812, 17syl5ibrcom 247 . . . 4 (𝑌 ∈ ℤ → (𝑋 ∈ {-∞} → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1))))
1918impcom 407 . . 3 ((𝑋 ∈ {-∞} ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
204, 19jaoian 959 . 2 (((𝑋 ∈ ℕ0𝑋 ∈ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
211, 20sylanb 581 1 ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  cun 3949  {csn 4626   class class class wbr 5143  (class class class)co 7431  1c1 11156  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  cmin 11492  0cn0 12526  cz 12613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614
This theorem is referenced by:  degltp1le  26112  ply1divex  26176  algextdeglem8  33765
  Copyright terms: Public domain W3C validator