MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  degltlem1 Structured version   Visualization version   GIF version

Theorem degltlem1 26004
Description: Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Assertion
Ref Expression
degltlem1 ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))

Proof of Theorem degltlem1
StepHypRef Expression
1 elun 4100 . 2 (𝑋 ∈ (ℕ0 ∪ {-∞}) ↔ (𝑋 ∈ ℕ0𝑋 ∈ {-∞}))
2 nn0z 12493 . . . 4 (𝑋 ∈ ℕ0𝑋 ∈ ℤ)
3 zltlem1 12525 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
42, 3sylan 580 . . 3 ((𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
5 zre 12472 . . . . . . 7 (𝑌 ∈ ℤ → 𝑌 ∈ ℝ)
65mnfltd 13023 . . . . . 6 (𝑌 ∈ ℤ → -∞ < 𝑌)
7 peano2zm 12515 . . . . . . . . 9 (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℤ)
87zred 12577 . . . . . . . 8 (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℝ)
98rexrd 11162 . . . . . . 7 (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℝ*)
10 mnfle 13034 . . . . . . 7 ((𝑌 − 1) ∈ ℝ* → -∞ ≤ (𝑌 − 1))
119, 10syl 17 . . . . . 6 (𝑌 ∈ ℤ → -∞ ≤ (𝑌 − 1))
126, 112thd 265 . . . . 5 (𝑌 ∈ ℤ → (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1)))
13 elsni 4590 . . . . . 6 (𝑋 ∈ {-∞} → 𝑋 = -∞)
14 breq1 5092 . . . . . . 7 (𝑋 = -∞ → (𝑋 < 𝑌 ↔ -∞ < 𝑌))
15 breq1 5092 . . . . . . 7 (𝑋 = -∞ → (𝑋 ≤ (𝑌 − 1) ↔ -∞ ≤ (𝑌 − 1)))
1614, 15bibi12d 345 . . . . . 6 (𝑋 = -∞ → ((𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)) ↔ (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1))))
1713, 16syl 17 . . . . 5 (𝑋 ∈ {-∞} → ((𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)) ↔ (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1))))
1812, 17syl5ibrcom 247 . . . 4 (𝑌 ∈ ℤ → (𝑋 ∈ {-∞} → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1))))
1918impcom 407 . . 3 ((𝑋 ∈ {-∞} ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
204, 19jaoian 958 . 2 (((𝑋 ∈ ℕ0𝑋 ∈ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
211, 20sylanb 581 1 ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  cun 3895  {csn 4573   class class class wbr 5089  (class class class)co 7346  1c1 11007  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  cmin 11344  0cn0 12381  cz 12468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469
This theorem is referenced by:  degltp1le  26005  ply1divex  26069  algextdeglem8  33737
  Copyright terms: Public domain W3C validator