MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  degltlem1 Structured version   Visualization version   GIF version

Theorem degltlem1 25963
Description: Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Assertion
Ref Expression
degltlem1 ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))

Proof of Theorem degltlem1
StepHypRef Expression
1 elun 4143 . 2 (𝑋 ∈ (ℕ0 ∪ {-∞}) ↔ (𝑋 ∈ ℕ0𝑋 ∈ {-∞}))
2 nn0z 12587 . . . 4 (𝑋 ∈ ℕ0𝑋 ∈ ℤ)
3 zltlem1 12619 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
42, 3sylan 579 . . 3 ((𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
5 zre 12566 . . . . . . 7 (𝑌 ∈ ℤ → 𝑌 ∈ ℝ)
65mnfltd 13110 . . . . . 6 (𝑌 ∈ ℤ → -∞ < 𝑌)
7 peano2zm 12609 . . . . . . . . 9 (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℤ)
87zred 12670 . . . . . . . 8 (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℝ)
98rexrd 11268 . . . . . . 7 (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℝ*)
10 mnfle 13120 . . . . . . 7 ((𝑌 − 1) ∈ ℝ* → -∞ ≤ (𝑌 − 1))
119, 10syl 17 . . . . . 6 (𝑌 ∈ ℤ → -∞ ≤ (𝑌 − 1))
126, 112thd 265 . . . . 5 (𝑌 ∈ ℤ → (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1)))
13 elsni 4640 . . . . . 6 (𝑋 ∈ {-∞} → 𝑋 = -∞)
14 breq1 5144 . . . . . . 7 (𝑋 = -∞ → (𝑋 < 𝑌 ↔ -∞ < 𝑌))
15 breq1 5144 . . . . . . 7 (𝑋 = -∞ → (𝑋 ≤ (𝑌 − 1) ↔ -∞ ≤ (𝑌 − 1)))
1614, 15bibi12d 345 . . . . . 6 (𝑋 = -∞ → ((𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)) ↔ (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1))))
1713, 16syl 17 . . . . 5 (𝑋 ∈ {-∞} → ((𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)) ↔ (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1))))
1812, 17syl5ibrcom 246 . . . 4 (𝑌 ∈ ℤ → (𝑋 ∈ {-∞} → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1))))
1918impcom 407 . . 3 ((𝑋 ∈ {-∞} ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
204, 19jaoian 953 . 2 (((𝑋 ∈ ℕ0𝑋 ∈ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
211, 20sylanb 580 1 ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844   = wceq 1533  wcel 2098  cun 3941  {csn 4623   class class class wbr 5141  (class class class)co 7405  1c1 11113  -∞cmnf 11250  *cxr 11251   < clt 11252  cle 11253  cmin 11448  0cn0 12476  cz 12562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563
This theorem is referenced by:  degltp1le  25964  ply1divex  26027  algextdeglem8  33301
  Copyright terms: Public domain W3C validator