MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem3 Structured version   Visualization version   GIF version

Theorem ipasslem3 29096
Description: Lemma for ipassi 29104. Show the inner product associative law for all integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem3 ((𝑁 ∈ ℤ ∧ 𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem3
StepHypRef Expression
1 elznn0nn 12263 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 ip1i.1 . . . 4 𝑋 = (BaseSet‘𝑈)
3 ip1i.2 . . . 4 𝐺 = ( +𝑣𝑈)
4 ip1i.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
5 ip1i.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
6 ip1i.9 . . . 4 𝑈 ∈ CPreHilOLD
7 ipasslem1.b . . . 4 𝐵𝑋
82, 3, 4, 5, 6, 7ipasslem1 29094 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
9 nnnn0 12170 . . . . . 6 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
102, 3, 4, 5, 6, 7ipasslem2 29095 . . . . . 6 ((-𝑁 ∈ ℕ0𝐴𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = (--𝑁 · (𝐴𝑃𝐵)))
119, 10sylan 579 . . . . 5 ((-𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = (--𝑁 · (𝐴𝑃𝐵)))
1211adantll 710 . . . 4 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = (--𝑁 · (𝐴𝑃𝐵)))
13 recn 10892 . . . . . . . 8 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
1413negnegd 11253 . . . . . . 7 (𝑁 ∈ ℝ → --𝑁 = 𝑁)
1514oveq1d 7270 . . . . . 6 (𝑁 ∈ ℝ → (--𝑁𝑆𝐴) = (𝑁𝑆𝐴))
1615oveq1d 7270 . . . . 5 (𝑁 ∈ ℝ → ((--𝑁𝑆𝐴)𝑃𝐵) = ((𝑁𝑆𝐴)𝑃𝐵))
1716ad2antrr 722 . . . 4 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = ((𝑁𝑆𝐴)𝑃𝐵))
1814oveq1d 7270 . . . . 5 (𝑁 ∈ ℝ → (--𝑁 · (𝐴𝑃𝐵)) = (𝑁 · (𝐴𝑃𝐵)))
1918ad2antrr 722 . . . 4 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴𝑋) → (--𝑁 · (𝐴𝑃𝐵)) = (𝑁 · (𝐴𝑃𝐵)))
2012, 17, 193eqtr3d 2786 . . 3 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
218, 20jaoian 953 . 2 (((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) ∧ 𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
221, 21sylanb 580 1 ((𝑁 ∈ ℤ ∧ 𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cr 10801   · cmul 10807  -cneg 11136  cn 11903  0cn0 12163  cz 12249   +𝑣 cpv 28848  BaseSetcba 28849   ·𝑠OLD cns 28850  ·𝑖OLDcdip 28963  CPreHilOLDccphlo 29075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-dip 28964  df-ph 29076
This theorem is referenced by:  ipasslem5  29098
  Copyright terms: Public domain W3C validator