MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem3 Structured version   Visualization version   GIF version

Theorem ipasslem3 30812
Description: Lemma for ipassi 30820. Show the inner product associative law for all integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem3 ((𝑁 ∈ ℤ ∧ 𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem3
StepHypRef Expression
1 elznn0nn 12519 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 ip1i.1 . . . 4 𝑋 = (BaseSet‘𝑈)
3 ip1i.2 . . . 4 𝐺 = ( +𝑣𝑈)
4 ip1i.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
5 ip1i.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
6 ip1i.9 . . . 4 𝑈 ∈ CPreHilOLD
7 ipasslem1.b . . . 4 𝐵𝑋
82, 3, 4, 5, 6, 7ipasslem1 30810 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
9 nnnn0 12425 . . . . . 6 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
102, 3, 4, 5, 6, 7ipasslem2 30811 . . . . . 6 ((-𝑁 ∈ ℕ0𝐴𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = (--𝑁 · (𝐴𝑃𝐵)))
119, 10sylan 580 . . . . 5 ((-𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = (--𝑁 · (𝐴𝑃𝐵)))
1211adantll 714 . . . 4 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = (--𝑁 · (𝐴𝑃𝐵)))
13 recn 11134 . . . . . . . 8 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
1413negnegd 11500 . . . . . . 7 (𝑁 ∈ ℝ → --𝑁 = 𝑁)
1514oveq1d 7384 . . . . . 6 (𝑁 ∈ ℝ → (--𝑁𝑆𝐴) = (𝑁𝑆𝐴))
1615oveq1d 7384 . . . . 5 (𝑁 ∈ ℝ → ((--𝑁𝑆𝐴)𝑃𝐵) = ((𝑁𝑆𝐴)𝑃𝐵))
1716ad2antrr 726 . . . 4 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = ((𝑁𝑆𝐴)𝑃𝐵))
1814oveq1d 7384 . . . . 5 (𝑁 ∈ ℝ → (--𝑁 · (𝐴𝑃𝐵)) = (𝑁 · (𝐴𝑃𝐵)))
1918ad2antrr 726 . . . 4 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴𝑋) → (--𝑁 · (𝐴𝑃𝐵)) = (𝑁 · (𝐴𝑃𝐵)))
2012, 17, 193eqtr3d 2772 . . 3 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
218, 20jaoian 958 . 2 (((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) ∧ 𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
221, 21sylanb 581 1 ((𝑁 ∈ ℤ ∧ 𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cr 11043   · cmul 11049  -cneg 11382  cn 12162  0cn0 12418  cz 12505   +𝑣 cpv 30564  BaseSetcba 30565   ·𝑠OLD cns 30566  ·𝑖OLDcdip 30679  CPreHilOLDccphlo 30791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-grpo 30472  df-gid 30473  df-ginv 30474  df-ablo 30524  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-nmcv 30579  df-dip 30680  df-ph 30792
This theorem is referenced by:  ipasslem5  30814
  Copyright terms: Public domain W3C validator