![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipasslem3 | Structured version Visualization version GIF version |
Description: Lemma for ipassi 30669. Show the inner product associative law for all integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 |
Ref | Expression |
---|---|
ipasslem3 | ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0nn 12608 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | |
2 | ip1i.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | ip1i.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
4 | ip1i.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
5 | ip1i.7 | . . . 4 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | ip1i.9 | . . . 4 ⊢ 𝑈 ∈ CPreHilOLD | |
7 | ipasslem1.b | . . . 4 ⊢ 𝐵 ∈ 𝑋 | |
8 | 2, 3, 4, 5, 6, 7 | ipasslem1 30659 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) |
9 | nnnn0 12515 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0) | |
10 | 2, 3, 4, 5, 6, 7 | ipasslem2 30660 | . . . . . 6 ⊢ ((-𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = (--𝑁 · (𝐴𝑃𝐵))) |
11 | 9, 10 | sylan 578 | . . . . 5 ⊢ ((-𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = (--𝑁 · (𝐴𝑃𝐵))) |
12 | 11 | adantll 712 | . . . 4 ⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴 ∈ 𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = (--𝑁 · (𝐴𝑃𝐵))) |
13 | recn 11234 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
14 | 13 | negnegd 11598 | . . . . . . 7 ⊢ (𝑁 ∈ ℝ → --𝑁 = 𝑁) |
15 | 14 | oveq1d 7439 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → (--𝑁𝑆𝐴) = (𝑁𝑆𝐴)) |
16 | 15 | oveq1d 7439 | . . . . 5 ⊢ (𝑁 ∈ ℝ → ((--𝑁𝑆𝐴)𝑃𝐵) = ((𝑁𝑆𝐴)𝑃𝐵)) |
17 | 16 | ad2antrr 724 | . . . 4 ⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴 ∈ 𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = ((𝑁𝑆𝐴)𝑃𝐵)) |
18 | 14 | oveq1d 7439 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (--𝑁 · (𝐴𝑃𝐵)) = (𝑁 · (𝐴𝑃𝐵))) |
19 | 18 | ad2antrr 724 | . . . 4 ⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴 ∈ 𝑋) → (--𝑁 · (𝐴𝑃𝐵)) = (𝑁 · (𝐴𝑃𝐵))) |
20 | 12, 17, 19 | 3eqtr3d 2775 | . . 3 ⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) |
21 | 8, 20 | jaoian 954 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) |
22 | 1, 21 | sylanb 579 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ‘cfv 6551 (class class class)co 7424 ℝcr 11143 · cmul 11149 -cneg 11481 ℕcn 12248 ℕ0cn0 12508 ℤcz 12594 +𝑣 cpv 30413 BaseSetcba 30414 ·𝑠OLD cns 30415 ·𝑖OLDcdip 30528 CPreHilOLDccphlo 30640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-oi 9539 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-n0 12509 df-z 12595 df-uz 12859 df-rp 13013 df-fz 13523 df-fzo 13666 df-seq 14005 df-exp 14065 df-hash 14328 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-clim 15470 df-sum 15671 df-grpo 30321 df-gid 30322 df-ginv 30323 df-ablo 30373 df-vc 30387 df-nv 30420 df-va 30423 df-ba 30424 df-sm 30425 df-0v 30426 df-nmcv 30428 df-dip 30529 df-ph 30641 |
This theorem is referenced by: ipasslem5 30663 |
Copyright terms: Public domain | W3C validator |