![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipasslem3 | Structured version Visualization version GIF version |
Description: Lemma for ipassi 28268. Show the inner product associative law for all integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 |
Ref | Expression |
---|---|
ipasslem3 | ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0nn 11742 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | |
2 | ip1i.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | ip1i.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
4 | ip1i.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
5 | ip1i.7 | . . . 4 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | ip1i.9 | . . . 4 ⊢ 𝑈 ∈ CPreHilOLD | |
7 | ipasslem1.b | . . . 4 ⊢ 𝐵 ∈ 𝑋 | |
8 | 2, 3, 4, 5, 6, 7 | ipasslem1 28258 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) |
9 | nnnn0 11650 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0) | |
10 | 2, 3, 4, 5, 6, 7 | ipasslem2 28259 | . . . . . 6 ⊢ ((-𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = (--𝑁 · (𝐴𝑃𝐵))) |
11 | 9, 10 | sylan 575 | . . . . 5 ⊢ ((-𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = (--𝑁 · (𝐴𝑃𝐵))) |
12 | 11 | adantll 704 | . . . 4 ⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴 ∈ 𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = (--𝑁 · (𝐴𝑃𝐵))) |
13 | recn 10362 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
14 | 13 | negnegd 10725 | . . . . . . 7 ⊢ (𝑁 ∈ ℝ → --𝑁 = 𝑁) |
15 | 14 | oveq1d 6937 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → (--𝑁𝑆𝐴) = (𝑁𝑆𝐴)) |
16 | 15 | oveq1d 6937 | . . . . 5 ⊢ (𝑁 ∈ ℝ → ((--𝑁𝑆𝐴)𝑃𝐵) = ((𝑁𝑆𝐴)𝑃𝐵)) |
17 | 16 | ad2antrr 716 | . . . 4 ⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴 ∈ 𝑋) → ((--𝑁𝑆𝐴)𝑃𝐵) = ((𝑁𝑆𝐴)𝑃𝐵)) |
18 | 14 | oveq1d 6937 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (--𝑁 · (𝐴𝑃𝐵)) = (𝑁 · (𝐴𝑃𝐵))) |
19 | 18 | ad2antrr 716 | . . . 4 ⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴 ∈ 𝑋) → (--𝑁 · (𝐴𝑃𝐵)) = (𝑁 · (𝐴𝑃𝐵))) |
20 | 12, 17, 19 | 3eqtr3d 2822 | . . 3 ⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) |
21 | 8, 20 | jaoian 942 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) |
22 | 1, 21 | sylanb 576 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∨ wo 836 = wceq 1601 ∈ wcel 2107 ‘cfv 6135 (class class class)co 6922 ℝcr 10271 · cmul 10277 -cneg 10607 ℕcn 11374 ℕ0cn0 11642 ℤcz 11728 +𝑣 cpv 28012 BaseSetcba 28013 ·𝑠OLD cns 28014 ·𝑖OLDcdip 28127 CPreHilOLDccphlo 28239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-grpo 27920 df-gid 27921 df-ginv 27922 df-ablo 27972 df-vc 27986 df-nv 28019 df-va 28022 df-ba 28023 df-sm 28024 df-0v 28025 df-nmcv 28027 df-dip 28128 df-ph 28240 |
This theorem is referenced by: ipasslem5 28262 |
Copyright terms: Public domain | W3C validator |