MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd3 Structured version   Visualization version   GIF version

Theorem faclbnd3 14328
Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
faclbnd3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))

Proof of Theorem faclbnd3
StepHypRef Expression
1 elnn0 12526 . 2 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 nnre 12271 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
32adantr 480 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
4 nnge1 12292 . . . . . 6 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
54adantr 480 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ≤ 𝑀)
6 nn0z 12636 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
76adantl 481 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
8 uzid 12891 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
9 peano2uz 12941 . . . . . 6 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
107, 8, 93syl 18 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (ℤ𝑁))
113, 5, 10leexp2ad 14290 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)))
12 nnnn0 12531 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
13 faclbnd 14326 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
1412, 13sylan 580 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
15 nn0re 12533 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
16 reexpcl 14116 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
1715, 16sylan 580 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
18 peano2nn0 12564 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
19 reexpcl 14116 . . . . . . 7 ((𝑀 ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ∈ ℝ)
2015, 18, 19syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ∈ ℝ)
21 reexpcl 14116 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑀𝑀) ∈ ℝ)
2215, 21mpancom 688 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀𝑀) ∈ ℝ)
23 faccl 14319 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2423nnred 12279 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
25 remulcl 11238 . . . . . . 7 (((𝑀𝑀) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ)
2622, 24, 25syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ)
27 letr 11353 . . . . . 6 (((𝑀𝑁) ∈ ℝ ∧ (𝑀↑(𝑁 + 1)) ∈ ℝ ∧ ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
2817, 20, 26, 27syl3anc 1370 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
2912, 28sylan 580 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
3011, 14, 29mp2and 699 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
31 elnn0 12526 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32 0exp 14135 . . . . . . . . 9 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
33 0le1 11784 . . . . . . . . 9 0 ≤ 1
3432, 33eqbrtrdi 5187 . . . . . . . 8 (𝑁 ∈ ℕ → (0↑𝑁) ≤ 1)
35 oveq2 7439 . . . . . . . . 9 (𝑁 = 0 → (0↑𝑁) = (0↑0))
36 0exp0e1 14104 . . . . . . . . . 10 (0↑0) = 1
37 1le1 11889 . . . . . . . . . 10 1 ≤ 1
3836, 37eqbrtri 5169 . . . . . . . . 9 (0↑0) ≤ 1
3935, 38eqbrtrdi 5187 . . . . . . . 8 (𝑁 = 0 → (0↑𝑁) ≤ 1)
4034, 39jaoi 857 . . . . . . 7 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0↑𝑁) ≤ 1)
4131, 40sylbi 217 . . . . . 6 (𝑁 ∈ ℕ0 → (0↑𝑁) ≤ 1)
42 1nn 12275 . . . . . . . 8 1 ∈ ℕ
43 nnmulcl 12288 . . . . . . . 8 ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 · (!‘𝑁)) ∈ ℕ)
4442, 23, 43sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) ∈ ℕ)
4544nnge1d 12312 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ≤ (1 · (!‘𝑁)))
46 0re 11261 . . . . . . . 8 0 ∈ ℝ
47 reexpcl 14116 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (0↑𝑁) ∈ ℝ)
4846, 47mpan 690 . . . . . . 7 (𝑁 ∈ ℕ0 → (0↑𝑁) ∈ ℝ)
49 1re 11259 . . . . . . . 8 1 ∈ ℝ
50 remulcl 11238 . . . . . . . 8 ((1 ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (1 · (!‘𝑁)) ∈ ℝ)
5149, 24, 50sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) ∈ ℝ)
52 letr 11353 . . . . . . . 8 (((0↑𝑁) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 · (!‘𝑁)) ∈ ℝ) → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5349, 52mp3an2 1448 . . . . . . 7 (((0↑𝑁) ∈ ℝ ∧ (1 · (!‘𝑁)) ∈ ℝ) → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5448, 51, 53syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5541, 45, 54mp2and 699 . . . . 5 (𝑁 ∈ ℕ0 → (0↑𝑁) ≤ (1 · (!‘𝑁)))
5655adantl 481 . . . 4 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (0↑𝑁) ≤ (1 · (!‘𝑁)))
57 oveq1 7438 . . . . . 6 (𝑀 = 0 → (𝑀𝑁) = (0↑𝑁))
58 oveq12 7440 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝑀 = 0) → (𝑀𝑀) = (0↑0))
5958anidms 566 . . . . . . . 8 (𝑀 = 0 → (𝑀𝑀) = (0↑0))
6059, 36eqtrdi 2791 . . . . . . 7 (𝑀 = 0 → (𝑀𝑀) = 1)
6160oveq1d 7446 . . . . . 6 (𝑀 = 0 → ((𝑀𝑀) · (!‘𝑁)) = (1 · (!‘𝑁)))
6257, 61breq12d 5161 . . . . 5 (𝑀 = 0 → ((𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑𝑁) ≤ (1 · (!‘𝑁))))
6362adantr 480 . . . 4 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → ((𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑𝑁) ≤ (1 · (!‘𝑁))))
6456, 63mpbird 257 . . 3 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
6530, 64jaoian 958 . 2 (((𝑀 ∈ ℕ ∨ 𝑀 = 0) ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
661, 65sylanb 581 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cle 11294  cn 12264  0cn0 12524  cz 12611  cuz 12876  cexp 14099  !cfa 14309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-fac 14310
This theorem is referenced by:  faclbnd4lem4  14332
  Copyright terms: Public domain W3C validator