MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd3 Structured version   Visualization version   GIF version

Theorem faclbnd3 13934
Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
faclbnd3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))

Proof of Theorem faclbnd3
StepHypRef Expression
1 elnn0 12165 . 2 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 nnre 11910 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
32adantr 480 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
4 nnge1 11931 . . . . . 6 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
54adantr 480 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ≤ 𝑀)
6 nn0z 12273 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
76adantl 481 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
8 uzid 12526 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
9 peano2uz 12570 . . . . . 6 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
107, 8, 93syl 18 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (ℤ𝑁))
113, 5, 10leexp2ad 13899 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)))
12 nnnn0 12170 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
13 faclbnd 13932 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
1412, 13sylan 579 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
15 nn0re 12172 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
16 reexpcl 13727 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
1715, 16sylan 579 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
18 peano2nn0 12203 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
19 reexpcl 13727 . . . . . . 7 ((𝑀 ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ∈ ℝ)
2015, 18, 19syl2an 595 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ∈ ℝ)
21 reexpcl 13727 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑀𝑀) ∈ ℝ)
2215, 21mpancom 684 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀𝑀) ∈ ℝ)
23 faccl 13925 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2423nnred 11918 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
25 remulcl 10887 . . . . . . 7 (((𝑀𝑀) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ)
2622, 24, 25syl2an 595 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ)
27 letr 10999 . . . . . 6 (((𝑀𝑁) ∈ ℝ ∧ (𝑀↑(𝑁 + 1)) ∈ ℝ ∧ ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
2817, 20, 26, 27syl3anc 1369 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
2912, 28sylan 579 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
3011, 14, 29mp2and 695 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
31 elnn0 12165 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32 0exp 13746 . . . . . . . . 9 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
33 0le1 11428 . . . . . . . . 9 0 ≤ 1
3432, 33eqbrtrdi 5109 . . . . . . . 8 (𝑁 ∈ ℕ → (0↑𝑁) ≤ 1)
35 oveq2 7263 . . . . . . . . 9 (𝑁 = 0 → (0↑𝑁) = (0↑0))
36 0exp0e1 13715 . . . . . . . . . 10 (0↑0) = 1
37 1le1 11533 . . . . . . . . . 10 1 ≤ 1
3836, 37eqbrtri 5091 . . . . . . . . 9 (0↑0) ≤ 1
3935, 38eqbrtrdi 5109 . . . . . . . 8 (𝑁 = 0 → (0↑𝑁) ≤ 1)
4034, 39jaoi 853 . . . . . . 7 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0↑𝑁) ≤ 1)
4131, 40sylbi 216 . . . . . 6 (𝑁 ∈ ℕ0 → (0↑𝑁) ≤ 1)
42 1nn 11914 . . . . . . . 8 1 ∈ ℕ
43 nnmulcl 11927 . . . . . . . 8 ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 · (!‘𝑁)) ∈ ℕ)
4442, 23, 43sylancr 586 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) ∈ ℕ)
4544nnge1d 11951 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ≤ (1 · (!‘𝑁)))
46 0re 10908 . . . . . . . 8 0 ∈ ℝ
47 reexpcl 13727 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (0↑𝑁) ∈ ℝ)
4846, 47mpan 686 . . . . . . 7 (𝑁 ∈ ℕ0 → (0↑𝑁) ∈ ℝ)
49 1re 10906 . . . . . . . 8 1 ∈ ℝ
50 remulcl 10887 . . . . . . . 8 ((1 ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (1 · (!‘𝑁)) ∈ ℝ)
5149, 24, 50sylancr 586 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) ∈ ℝ)
52 letr 10999 . . . . . . . 8 (((0↑𝑁) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 · (!‘𝑁)) ∈ ℝ) → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5349, 52mp3an2 1447 . . . . . . 7 (((0↑𝑁) ∈ ℝ ∧ (1 · (!‘𝑁)) ∈ ℝ) → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5448, 51, 53syl2anc 583 . . . . . 6 (𝑁 ∈ ℕ0 → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5541, 45, 54mp2and 695 . . . . 5 (𝑁 ∈ ℕ0 → (0↑𝑁) ≤ (1 · (!‘𝑁)))
5655adantl 481 . . . 4 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (0↑𝑁) ≤ (1 · (!‘𝑁)))
57 oveq1 7262 . . . . . 6 (𝑀 = 0 → (𝑀𝑁) = (0↑𝑁))
58 oveq12 7264 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝑀 = 0) → (𝑀𝑀) = (0↑0))
5958anidms 566 . . . . . . . 8 (𝑀 = 0 → (𝑀𝑀) = (0↑0))
6059, 36eqtrdi 2795 . . . . . . 7 (𝑀 = 0 → (𝑀𝑀) = 1)
6160oveq1d 7270 . . . . . 6 (𝑀 = 0 → ((𝑀𝑀) · (!‘𝑁)) = (1 · (!‘𝑁)))
6257, 61breq12d 5083 . . . . 5 (𝑀 = 0 → ((𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑𝑁) ≤ (1 · (!‘𝑁))))
6362adantr 480 . . . 4 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → ((𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑𝑁) ≤ (1 · (!‘𝑁))))
6456, 63mpbird 256 . . 3 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
6530, 64jaoian 953 . 2 (((𝑀 ∈ ℕ ∨ 𝑀 = 0) ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
661, 65sylanb 580 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  cn 11903  0cn0 12163  cz 12249  cuz 12511  cexp 13710  !cfa 13915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-fac 13916
This theorem is referenced by:  faclbnd4lem4  13938
  Copyright terms: Public domain W3C validator