MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd3 Structured version   Visualization version   GIF version

Theorem faclbnd3 14199
Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
faclbnd3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))

Proof of Theorem faclbnd3
StepHypRef Expression
1 elnn0 12386 . 2 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 nnre 12135 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
32adantr 480 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
4 nnge1 12156 . . . . . 6 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
54adantr 480 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ≤ 𝑀)
6 nn0z 12496 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
76adantl 481 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
8 uzid 12750 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
9 peano2uz 12802 . . . . . 6 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
107, 8, 93syl 18 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (ℤ𝑁))
113, 5, 10leexp2ad 14161 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)))
12 nnnn0 12391 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
13 faclbnd 14197 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
1412, 13sylan 580 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
15 nn0re 12393 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
16 reexpcl 13985 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
1715, 16sylan 580 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
18 peano2nn0 12424 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
19 reexpcl 13985 . . . . . . 7 ((𝑀 ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ∈ ℝ)
2015, 18, 19syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ∈ ℝ)
21 reexpcl 13985 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑀𝑀) ∈ ℝ)
2215, 21mpancom 688 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀𝑀) ∈ ℝ)
23 faccl 14190 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2423nnred 12143 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
25 remulcl 11094 . . . . . . 7 (((𝑀𝑀) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ)
2622, 24, 25syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ)
27 letr 11210 . . . . . 6 (((𝑀𝑁) ∈ ℝ ∧ (𝑀↑(𝑁 + 1)) ∈ ℝ ∧ ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
2817, 20, 26, 27syl3anc 1373 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
2912, 28sylan 580 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
3011, 14, 29mp2and 699 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
31 elnn0 12386 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32 0exp 14004 . . . . . . . . 9 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
33 0le1 11643 . . . . . . . . 9 0 ≤ 1
3432, 33eqbrtrdi 5131 . . . . . . . 8 (𝑁 ∈ ℕ → (0↑𝑁) ≤ 1)
35 oveq2 7357 . . . . . . . . 9 (𝑁 = 0 → (0↑𝑁) = (0↑0))
36 0exp0e1 13973 . . . . . . . . . 10 (0↑0) = 1
37 1le1 11748 . . . . . . . . . 10 1 ≤ 1
3836, 37eqbrtri 5113 . . . . . . . . 9 (0↑0) ≤ 1
3935, 38eqbrtrdi 5131 . . . . . . . 8 (𝑁 = 0 → (0↑𝑁) ≤ 1)
4034, 39jaoi 857 . . . . . . 7 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0↑𝑁) ≤ 1)
4131, 40sylbi 217 . . . . . 6 (𝑁 ∈ ℕ0 → (0↑𝑁) ≤ 1)
42 1nn 12139 . . . . . . . 8 1 ∈ ℕ
43 nnmulcl 12152 . . . . . . . 8 ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 · (!‘𝑁)) ∈ ℕ)
4442, 23, 43sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) ∈ ℕ)
4544nnge1d 12176 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ≤ (1 · (!‘𝑁)))
46 0re 11117 . . . . . . . 8 0 ∈ ℝ
47 reexpcl 13985 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (0↑𝑁) ∈ ℝ)
4846, 47mpan 690 . . . . . . 7 (𝑁 ∈ ℕ0 → (0↑𝑁) ∈ ℝ)
49 1re 11115 . . . . . . . 8 1 ∈ ℝ
50 remulcl 11094 . . . . . . . 8 ((1 ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (1 · (!‘𝑁)) ∈ ℝ)
5149, 24, 50sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) ∈ ℝ)
52 letr 11210 . . . . . . . 8 (((0↑𝑁) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 · (!‘𝑁)) ∈ ℝ) → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5349, 52mp3an2 1451 . . . . . . 7 (((0↑𝑁) ∈ ℝ ∧ (1 · (!‘𝑁)) ∈ ℝ) → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5448, 51, 53syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5541, 45, 54mp2and 699 . . . . 5 (𝑁 ∈ ℕ0 → (0↑𝑁) ≤ (1 · (!‘𝑁)))
5655adantl 481 . . . 4 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (0↑𝑁) ≤ (1 · (!‘𝑁)))
57 oveq1 7356 . . . . . 6 (𝑀 = 0 → (𝑀𝑁) = (0↑𝑁))
58 oveq12 7358 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝑀 = 0) → (𝑀𝑀) = (0↑0))
5958anidms 566 . . . . . . . 8 (𝑀 = 0 → (𝑀𝑀) = (0↑0))
6059, 36eqtrdi 2780 . . . . . . 7 (𝑀 = 0 → (𝑀𝑀) = 1)
6160oveq1d 7364 . . . . . 6 (𝑀 = 0 → ((𝑀𝑀) · (!‘𝑁)) = (1 · (!‘𝑁)))
6257, 61breq12d 5105 . . . . 5 (𝑀 = 0 → ((𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑𝑁) ≤ (1 · (!‘𝑁))))
6362adantr 480 . . . 4 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → ((𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑𝑁) ≤ (1 · (!‘𝑁))))
6456, 63mpbird 257 . . 3 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
6530, 64jaoian 958 . 2 (((𝑀 ∈ ℕ ∨ 𝑀 = 0) ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
661, 65sylanb 581 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cle 11150  cn 12128  0cn0 12384  cz 12471  cuz 12735  cexp 13968  !cfa 14180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-fac 14181
This theorem is referenced by:  faclbnd4lem4  14203
  Copyright terms: Public domain W3C validator