MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd3 Structured version   Visualization version   GIF version

Theorem faclbnd3 14233
Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
faclbnd3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))

Proof of Theorem faclbnd3
StepHypRef Expression
1 elnn0 12420 . 2 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 nnre 12169 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
32adantr 480 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
4 nnge1 12190 . . . . . 6 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
54adantr 480 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ≤ 𝑀)
6 nn0z 12530 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
76adantl 481 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
8 uzid 12784 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
9 peano2uz 12836 . . . . . 6 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
107, 8, 93syl 18 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (ℤ𝑁))
113, 5, 10leexp2ad 14195 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)))
12 nnnn0 12425 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
13 faclbnd 14231 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
1412, 13sylan 580 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
15 nn0re 12427 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
16 reexpcl 14019 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
1715, 16sylan 580 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
18 peano2nn0 12458 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
19 reexpcl 14019 . . . . . . 7 ((𝑀 ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ∈ ℝ)
2015, 18, 19syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ∈ ℝ)
21 reexpcl 14019 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑀𝑀) ∈ ℝ)
2215, 21mpancom 688 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀𝑀) ∈ ℝ)
23 faccl 14224 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2423nnred 12177 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
25 remulcl 11129 . . . . . . 7 (((𝑀𝑀) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ)
2622, 24, 25syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ)
27 letr 11244 . . . . . 6 (((𝑀𝑁) ∈ ℝ ∧ (𝑀↑(𝑁 + 1)) ∈ ℝ ∧ ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
2817, 20, 26, 27syl3anc 1373 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
2912, 28sylan 580 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
3011, 14, 29mp2and 699 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
31 elnn0 12420 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32 0exp 14038 . . . . . . . . 9 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
33 0le1 11677 . . . . . . . . 9 0 ≤ 1
3432, 33eqbrtrdi 5141 . . . . . . . 8 (𝑁 ∈ ℕ → (0↑𝑁) ≤ 1)
35 oveq2 7377 . . . . . . . . 9 (𝑁 = 0 → (0↑𝑁) = (0↑0))
36 0exp0e1 14007 . . . . . . . . . 10 (0↑0) = 1
37 1le1 11782 . . . . . . . . . 10 1 ≤ 1
3836, 37eqbrtri 5123 . . . . . . . . 9 (0↑0) ≤ 1
3935, 38eqbrtrdi 5141 . . . . . . . 8 (𝑁 = 0 → (0↑𝑁) ≤ 1)
4034, 39jaoi 857 . . . . . . 7 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0↑𝑁) ≤ 1)
4131, 40sylbi 217 . . . . . 6 (𝑁 ∈ ℕ0 → (0↑𝑁) ≤ 1)
42 1nn 12173 . . . . . . . 8 1 ∈ ℕ
43 nnmulcl 12186 . . . . . . . 8 ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 · (!‘𝑁)) ∈ ℕ)
4442, 23, 43sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) ∈ ℕ)
4544nnge1d 12210 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ≤ (1 · (!‘𝑁)))
46 0re 11152 . . . . . . . 8 0 ∈ ℝ
47 reexpcl 14019 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (0↑𝑁) ∈ ℝ)
4846, 47mpan 690 . . . . . . 7 (𝑁 ∈ ℕ0 → (0↑𝑁) ∈ ℝ)
49 1re 11150 . . . . . . . 8 1 ∈ ℝ
50 remulcl 11129 . . . . . . . 8 ((1 ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (1 · (!‘𝑁)) ∈ ℝ)
5149, 24, 50sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) ∈ ℝ)
52 letr 11244 . . . . . . . 8 (((0↑𝑁) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 · (!‘𝑁)) ∈ ℝ) → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5349, 52mp3an2 1451 . . . . . . 7 (((0↑𝑁) ∈ ℝ ∧ (1 · (!‘𝑁)) ∈ ℝ) → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5448, 51, 53syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5541, 45, 54mp2and 699 . . . . 5 (𝑁 ∈ ℕ0 → (0↑𝑁) ≤ (1 · (!‘𝑁)))
5655adantl 481 . . . 4 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (0↑𝑁) ≤ (1 · (!‘𝑁)))
57 oveq1 7376 . . . . . 6 (𝑀 = 0 → (𝑀𝑁) = (0↑𝑁))
58 oveq12 7378 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝑀 = 0) → (𝑀𝑀) = (0↑0))
5958anidms 566 . . . . . . . 8 (𝑀 = 0 → (𝑀𝑀) = (0↑0))
6059, 36eqtrdi 2780 . . . . . . 7 (𝑀 = 0 → (𝑀𝑀) = 1)
6160oveq1d 7384 . . . . . 6 (𝑀 = 0 → ((𝑀𝑀) · (!‘𝑁)) = (1 · (!‘𝑁)))
6257, 61breq12d 5115 . . . . 5 (𝑀 = 0 → ((𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑𝑁) ≤ (1 · (!‘𝑁))))
6362adantr 480 . . . 4 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → ((𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑𝑁) ≤ (1 · (!‘𝑁))))
6456, 63mpbird 257 . . 3 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
6530, 64jaoian 958 . 2 (((𝑀 ∈ ℕ ∨ 𝑀 = 0) ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
661, 65sylanb 581 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cle 11185  cn 12162  0cn0 12418  cz 12505  cuz 12769  cexp 14002  !cfa 14214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-fac 14215
This theorem is referenced by:  faclbnd4lem4  14237
  Copyright terms: Public domain W3C validator