| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0addcom | Structured version Visualization version GIF version | ||
| Description: Addition is commutative for nonnegative integers. Proven without ax-mulcom 11132. (Contributed by SN, 1-Feb-2025.) |
| Ref | Expression |
|---|---|
| nn0addcom | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12444 | . 2 ⊢ (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) | |
| 2 | elnn0 12444 | . . . 4 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
| 3 | nnaddcom 42256 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
| 4 | nnre 12193 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
| 5 | readdlid 42391 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → (0 + 𝐵) = 𝐵) | |
| 6 | readdrid 42398 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → (𝐵 + 0) = 𝐵) | |
| 7 | 5, 6 | eqtr4d 2767 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (0 + 𝐵) = (𝐵 + 0)) |
| 8 | 4, 7 | syl 17 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → (0 + 𝐵) = (𝐵 + 0)) |
| 9 | oveq1 7394 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐴 + 𝐵) = (0 + 𝐵)) | |
| 10 | oveq2 7395 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐵 + 𝐴) = (𝐵 + 0)) | |
| 11 | 9, 10 | eqeq12d 2745 | . . . . . . 7 ⊢ (𝐴 = 0 → ((𝐴 + 𝐵) = (𝐵 + 𝐴) ↔ (0 + 𝐵) = (𝐵 + 0))) |
| 12 | 8, 11 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → (𝐴 = 0 → (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
| 13 | 12 | impcom 407 | . . . . 5 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| 14 | 3, 13 | jaoian 958 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| 15 | 2, 14 | sylanb 581 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| 16 | nn0re 12451 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 17 | readdrid 42398 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) | |
| 18 | readdlid 42391 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) | |
| 19 | 17, 18 | eqtr4d 2767 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = (0 + 𝐴)) |
| 20 | 16, 19 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 0) = (0 + 𝐴)) |
| 21 | oveq2 7395 | . . . . . 6 ⊢ (𝐵 = 0 → (𝐴 + 𝐵) = (𝐴 + 0)) | |
| 22 | oveq1 7394 | . . . . . 6 ⊢ (𝐵 = 0 → (𝐵 + 𝐴) = (0 + 𝐴)) | |
| 23 | 21, 22 | eqeq12d 2745 | . . . . 5 ⊢ (𝐵 = 0 → ((𝐴 + 𝐵) = (𝐵 + 𝐴) ↔ (𝐴 + 0) = (0 + 𝐴))) |
| 24 | 20, 23 | syl5ibrcom 247 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → (𝐵 = 0 → (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
| 25 | 24 | imp 406 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 = 0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| 26 | 15, 25 | jaodan 959 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| 27 | 1, 26 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℝcr 11067 0cc0 11068 + caddc 11071 ℕcn 12186 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-resub 42354 |
| This theorem is referenced by: zaddcomlem 42451 zaddcom 42452 |
| Copyright terms: Public domain | W3C validator |