![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0addcom | Structured version Visualization version GIF version |
Description: Addition is commutative for nonnegative integers. Proven without ax-mulcom 11222. (Contributed by SN, 1-Feb-2025.) |
Ref | Expression |
---|---|
nn0addcom | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12526 | . 2 ⊢ (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) | |
2 | elnn0 12526 | . . . 4 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
3 | nnaddcom 42082 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
4 | nnre 12271 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
5 | readdlid 42183 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → (0 + 𝐵) = 𝐵) | |
6 | readdrid 42189 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → (𝐵 + 0) = 𝐵) | |
7 | 5, 6 | eqtr4d 2769 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (0 + 𝐵) = (𝐵 + 0)) |
8 | 4, 7 | syl 17 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → (0 + 𝐵) = (𝐵 + 0)) |
9 | oveq1 7431 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐴 + 𝐵) = (0 + 𝐵)) | |
10 | oveq2 7432 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐵 + 𝐴) = (𝐵 + 0)) | |
11 | 9, 10 | eqeq12d 2742 | . . . . . . 7 ⊢ (𝐴 = 0 → ((𝐴 + 𝐵) = (𝐵 + 𝐴) ↔ (0 + 𝐵) = (𝐵 + 0))) |
12 | 8, 11 | syl5ibrcom 246 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → (𝐴 = 0 → (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
13 | 12 | impcom 406 | . . . . 5 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
14 | 3, 13 | jaoian 954 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
15 | 2, 14 | sylanb 579 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
16 | nn0re 12533 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
17 | readdrid 42189 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) | |
18 | readdlid 42183 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) | |
19 | 17, 18 | eqtr4d 2769 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = (0 + 𝐴)) |
20 | 16, 19 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 0) = (0 + 𝐴)) |
21 | oveq2 7432 | . . . . . 6 ⊢ (𝐵 = 0 → (𝐴 + 𝐵) = (𝐴 + 0)) | |
22 | oveq1 7431 | . . . . . 6 ⊢ (𝐵 = 0 → (𝐵 + 𝐴) = (0 + 𝐴)) | |
23 | 21, 22 | eqeq12d 2742 | . . . . 5 ⊢ (𝐵 = 0 → ((𝐴 + 𝐵) = (𝐵 + 𝐴) ↔ (𝐴 + 0) = (0 + 𝐴))) |
24 | 20, 23 | syl5ibrcom 246 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → (𝐵 = 0 → (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
25 | 24 | imp 405 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 = 0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
26 | 15, 25 | jaodan 955 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
27 | 1, 26 | sylan2b 592 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 (class class class)co 7424 ℝcr 11157 0cc0 11158 + caddc 11161 ℕcn 12264 ℕ0cn0 12524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-ltxr 11303 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-resub 42146 |
This theorem is referenced by: zaddcomlem 42231 zaddcom 42232 |
Copyright terms: Public domain | W3C validator |