![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0addcom | Structured version Visualization version GIF version |
Description: Addition is commutative for nonnegative integers. Proven without ax-mulcom 11173. (Contributed by SN, 1-Feb-2025.) |
Ref | Expression |
---|---|
nn0addcom | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12473 | . 2 ⊢ (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) | |
2 | elnn0 12473 | . . . 4 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
3 | nnaddcom 41184 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
4 | nnre 12218 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
5 | readdlid 41277 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → (0 + 𝐵) = 𝐵) | |
6 | readdrid 41283 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → (𝐵 + 0) = 𝐵) | |
7 | 5, 6 | eqtr4d 2775 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (0 + 𝐵) = (𝐵 + 0)) |
8 | 4, 7 | syl 17 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → (0 + 𝐵) = (𝐵 + 0)) |
9 | oveq1 7415 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐴 + 𝐵) = (0 + 𝐵)) | |
10 | oveq2 7416 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐵 + 𝐴) = (𝐵 + 0)) | |
11 | 9, 10 | eqeq12d 2748 | . . . . . . 7 ⊢ (𝐴 = 0 → ((𝐴 + 𝐵) = (𝐵 + 𝐴) ↔ (0 + 𝐵) = (𝐵 + 0))) |
12 | 8, 11 | syl5ibrcom 246 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → (𝐴 = 0 → (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
13 | 12 | impcom 408 | . . . . 5 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
14 | 3, 13 | jaoian 955 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
15 | 2, 14 | sylanb 581 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
16 | nn0re 12480 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
17 | readdrid 41283 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) | |
18 | readdlid 41277 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) | |
19 | 17, 18 | eqtr4d 2775 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = (0 + 𝐴)) |
20 | 16, 19 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 0) = (0 + 𝐴)) |
21 | oveq2 7416 | . . . . . 6 ⊢ (𝐵 = 0 → (𝐴 + 𝐵) = (𝐴 + 0)) | |
22 | oveq1 7415 | . . . . . 6 ⊢ (𝐵 = 0 → (𝐵 + 𝐴) = (0 + 𝐴)) | |
23 | 21, 22 | eqeq12d 2748 | . . . . 5 ⊢ (𝐵 = 0 → ((𝐴 + 𝐵) = (𝐵 + 𝐴) ↔ (𝐴 + 0) = (0 + 𝐴))) |
24 | 20, 23 | syl5ibrcom 246 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → (𝐵 = 0 → (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
25 | 24 | imp 407 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 = 0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
26 | 15, 25 | jaodan 956 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
27 | 1, 26 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 (class class class)co 7408 ℝcr 11108 0cc0 11109 + caddc 11112 ℕcn 12211 ℕ0cn0 12471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-resub 41240 |
This theorem is referenced by: zaddcomlem 41325 zaddcom 41326 |
Copyright terms: Public domain | W3C validator |