![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lefld | Structured version Visualization version GIF version |
Description: The field of the 'less or equal to' relationship on the extended real. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
lefld | ⊢ ℝ* = ∪ ∪ ≤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lerel 11285 | . . 3 ⊢ Rel ≤ | |
2 | relfld 6274 | . . 3 ⊢ (Rel ≤ → ∪ ∪ ≤ = (dom ≤ ∪ ran ≤ )) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ ∪ ≤ = (dom ≤ ∪ ran ≤ ) |
4 | ledm 18553 | . . 3 ⊢ ℝ* = dom ≤ | |
5 | lern 18554 | . . 3 ⊢ ℝ* = ran ≤ | |
6 | 4, 5 | uneq12i 4161 | . 2 ⊢ (ℝ* ∪ ℝ*) = (dom ≤ ∪ ran ≤ ) |
7 | unidm 4152 | . 2 ⊢ (ℝ* ∪ ℝ*) = ℝ* | |
8 | 3, 6, 7 | 3eqtr2ri 2766 | 1 ⊢ ℝ* = ∪ ∪ ≤ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∪ cun 3946 ∪ cuni 4908 dom cdm 5676 ran crn 5677 Rel wrel 5681 ℝ*cxr 11254 ≤ cle 11256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-pre-lttri 11190 ax-pre-lttrn 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 |
This theorem is referenced by: letsr 18556 |
Copyright terms: Public domain | W3C validator |