MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvle Structured version   Visualization version   GIF version

Theorem dvle 24061
Description: If 𝐴(𝑥), 𝐶(𝑥) are differentiable functions and 𝐴‘ ≤ 𝐶, then for 𝑥𝑦, 𝐴(𝑦) − 𝐴(𝑥) ≤ 𝐶(𝑦) − 𝐶(𝑥). (Contributed by Mario Carneiro, 16-May-2016.)
Hypotheses
Ref Expression
dvle.m (𝜑𝑀 ∈ ℝ)
dvle.n (𝜑𝑁 ∈ ℝ)
dvle.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvle.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvle.c (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvle.d (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
dvle.f ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝐷)
dvle.x (𝜑𝑋 ∈ (𝑀[,]𝑁))
dvle.y (𝜑𝑌 ∈ (𝑀[,]𝑁))
dvle.l (𝜑𝑋𝑌)
dvle.p (𝑥 = 𝑋𝐴 = 𝑃)
dvle.q (𝑥 = 𝑋𝐶 = 𝑄)
dvle.r (𝑥 = 𝑌𝐴 = 𝑅)
dvle.s (𝑥 = 𝑌𝐶 = 𝑆)
Assertion
Ref Expression
dvle (𝜑 → (𝑅𝑃) ≤ (𝑆𝑄))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝑥,𝑃   𝑥,𝑄   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem dvle
StepHypRef Expression
1 dvle.r . . . 4 (𝑥 = 𝑌𝐴 = 𝑅)
21eleq1d 2829 . . 3 (𝑥 = 𝑌 → (𝐴 ∈ ℝ ↔ 𝑅 ∈ ℝ))
3 dvle.a . . . . 5 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
4 cncff 22975 . . . . 5 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
53, 4syl 17 . . . 4 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
6 eqid 2765 . . . . 5 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
76fmpt 6570 . . . 4 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
85, 7sylibr 225 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
9 dvle.y . . 3 (𝜑𝑌 ∈ (𝑀[,]𝑁))
102, 8, 9rspcdva 3467 . 2 (𝜑𝑅 ∈ ℝ)
11 dvle.s . . . . 5 (𝑥 = 𝑌𝐶 = 𝑆)
1211eleq1d 2829 . . . 4 (𝑥 = 𝑌 → (𝐶 ∈ ℝ ↔ 𝑆 ∈ ℝ))
13 dvle.c . . . . . 6 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ))
14 cncff 22975 . . . . . 6 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
1513, 14syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
16 eqid 2765 . . . . . 6 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶)
1716fmpt 6570 . . . . 5 (∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
1815, 17sylibr 225 . . . 4 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ)
1912, 18, 9rspcdva 3467 . . 3 (𝜑𝑆 ∈ ℝ)
20 dvle.q . . . . 5 (𝑥 = 𝑋𝐶 = 𝑄)
2120eleq1d 2829 . . . 4 (𝑥 = 𝑋 → (𝐶 ∈ ℝ ↔ 𝑄 ∈ ℝ))
22 dvle.x . . . 4 (𝜑𝑋 ∈ (𝑀[,]𝑁))
2321, 18, 22rspcdva 3467 . . 3 (𝜑𝑄 ∈ ℝ)
2419, 23resubcld 10712 . 2 (𝜑 → (𝑆𝑄) ∈ ℝ)
25 dvle.p . . . 4 (𝑥 = 𝑋𝐴 = 𝑃)
2625eleq1d 2829 . . 3 (𝑥 = 𝑋 → (𝐴 ∈ ℝ ↔ 𝑃 ∈ ℝ))
2726, 8, 22rspcdva 3467 . 2 (𝜑𝑃 ∈ ℝ)
2810recnd 10322 . . . . 5 (𝜑𝑅 ∈ ℂ)
2923recnd 10322 . . . . . 6 (𝜑𝑄 ∈ ℂ)
3019recnd 10322 . . . . . 6 (𝜑𝑆 ∈ ℂ)
3129, 30subcld 10646 . . . . 5 (𝜑 → (𝑄𝑆) ∈ ℂ)
3228, 31addcomd 10492 . . . 4 (𝜑 → (𝑅 + (𝑄𝑆)) = ((𝑄𝑆) + 𝑅))
3328, 30, 29subsub2d 10675 . . . 4 (𝜑 → (𝑅 − (𝑆𝑄)) = (𝑅 + (𝑄𝑆)))
3429, 30, 28subsubd 10674 . . . 4 (𝜑 → (𝑄 − (𝑆𝑅)) = ((𝑄𝑆) + 𝑅))
3532, 33, 343eqtr4d 2809 . . 3 (𝜑 → (𝑅 − (𝑆𝑄)) = (𝑄 − (𝑆𝑅)))
3619, 10resubcld 10712 . . . 4 (𝜑 → (𝑆𝑅) ∈ ℝ)
37 dvle.m . . . . . 6 (𝜑𝑀 ∈ ℝ)
38 dvle.n . . . . . 6 (𝜑𝑁 ∈ ℝ)
39 eqid 2765 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4039subcn 22948 . . . . . . 7 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
41 ax-resscn 10246 . . . . . . 7 ℝ ⊆ ℂ
42 resubcl 10599 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶𝐴) ∈ ℝ)
4339, 40, 13, 3, 41, 42cncfmpt2ss 22997 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℝ))
44 ioossicc 12461 . . . . . . . . . . . . . . . . 17 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
4544sseli 3757 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
4618r19.21bi 3079 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐶 ∈ ℝ)
4745, 46sylan2 586 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℝ)
4847fmpttd 6575 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℝ)
49 ioossre 12437 . . . . . . . . . . . . . 14 (𝑀(,)𝑁) ⊆ ℝ
50 dvfre 24005 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ)
5148, 49, 50sylancl 580 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ)
52 dvle.d . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
5352dmeqd 5494 . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
54 dvle.f . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝐷)
55 lerel 10356 . . . . . . . . . . . . . . . . . . 19 Rel ≤
5655brrelex2i 5329 . . . . . . . . . . . . . . . . . 18 (𝐵𝐷𝐷 ∈ V)
5754, 56syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐷 ∈ V)
5857ralrimiva 3113 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ V)
59 dmmptg 5818 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ V → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑀(,)𝑁))
6058, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑀(,)𝑁))
6153, 60eqtrd 2799 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑀(,)𝑁))
6252, 61feq12d 6211 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ))
6351, 62mpbid 223 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ)
64 eqid 2765 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷)
6564fmpt 6570 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ)
6663, 65sylibr 225 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ ℝ)
6766r19.21bi 3079 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐷 ∈ ℝ)
688r19.21bi 3079 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
6945, 68sylan2 586 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ)
7069fmpttd 6575 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ)
71 dvfre 24005 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
7270, 49, 71sylancl 580 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
73 dvle.b . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
7473dmeqd 5494 . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
7555brrelex1i 5328 . . . . . . . . . . . . . . . . . 18 (𝐵𝐷𝐵 ∈ V)
7654, 75syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ V)
7776ralrimiva 3113 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ V)
78 dmmptg 5818 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ V → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
7977, 78syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
8074, 79eqtrd 2799 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁))
8173, 80feq12d 6211 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ))
8272, 81mpbid 223 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
83 eqid 2765 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)
8483fmpt 6570 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
8582, 84sylibr 225 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ)
8685r19.21bi 3079 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ ℝ)
8767, 86resubcld 10712 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (𝐷𝐵) ∈ ℝ)
8867, 86subge0d 10871 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (0 ≤ (𝐷𝐵) ↔ 𝐵𝐷))
8954, 88mpbird 248 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 0 ≤ (𝐷𝐵))
90 elrege0 12482 . . . . . . . . 9 ((𝐷𝐵) ∈ (0[,)+∞) ↔ ((𝐷𝐵) ∈ ℝ ∧ 0 ≤ (𝐷𝐵)))
9187, 89, 90sylanbrc 578 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (𝐷𝐵) ∈ (0[,)+∞))
9291fmpttd 6575 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)):(𝑀(,)𝑁)⟶(0[,)+∞))
9341a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
94 iccssre 12457 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
9537, 38, 94syl2anc 579 . . . . . . . . . 10 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
9646, 68resubcld 10712 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐶𝐴) ∈ ℝ)
9796recnd 10322 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐶𝐴) ∈ ℂ)
9839tgioo2 22885 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
99 iccntr 22903 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁))
10037, 38, 99syl2anc 579 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁))
10193, 95, 97, 98, 39, 100dvmptntr 24025 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))) = (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐶𝐴))))
102 reelprrecn 10281 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
103102a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
10446recnd 10322 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐶 ∈ ℂ)
10545, 104sylan2 586 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℂ)
10668recnd 10322 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
10745, 106sylan2 586 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℂ)
108103, 105, 57, 52, 107, 76, 73dvmptsub 24021 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐶𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)))
109101, 108eqtrd 2799 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)))
110109feq1d 6208 . . . . . . 7 (𝜑 → ((ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))):(𝑀(,)𝑁)⟶(0[,)+∞) ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)):(𝑀(,)𝑁)⟶(0[,)+∞)))
11192, 110mpbird 248 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))):(𝑀(,)𝑁)⟶(0[,)+∞))
112 dvle.l . . . . . 6 (𝜑𝑋𝑌)
11337, 38, 43, 111, 22, 9, 112dvge0 24060 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) ≤ ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌))
11420, 25oveq12d 6860 . . . . . . 7 (𝑥 = 𝑋 → (𝐶𝐴) = (𝑄𝑃))
115 eqid 2765 . . . . . . 7 (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴)) = (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))
116 ovex 6874 . . . . . . 7 (𝐶𝐴) ∈ V
117114, 115, 116fvmpt3i 6476 . . . . . 6 (𝑋 ∈ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) = (𝑄𝑃))
11822, 117syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) = (𝑄𝑃))
11911, 1oveq12d 6860 . . . . . . 7 (𝑥 = 𝑌 → (𝐶𝐴) = (𝑆𝑅))
120119, 115, 116fvmpt3i 6476 . . . . . 6 (𝑌 ∈ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌) = (𝑆𝑅))
1219, 120syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌) = (𝑆𝑅))
122113, 118, 1213brtr3d 4840 . . . 4 (𝜑 → (𝑄𝑃) ≤ (𝑆𝑅))
12323, 27, 36, 122subled 10884 . . 3 (𝜑 → (𝑄 − (𝑆𝑅)) ≤ 𝑃)
12435, 123eqbrtrd 4831 . 2 (𝜑 → (𝑅 − (𝑆𝑄)) ≤ 𝑃)
12510, 24, 27, 124subled 10884 1 (𝜑 → (𝑅𝑃) ≤ (𝑆𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  wss 3732  {cpr 4336   class class class wbr 4809  cmpt 4888  dom cdm 5277  ran crn 5278  wf 6064  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189   + caddc 10192  +∞cpnf 10325  cle 10329  cmin 10520  (,)cioo 12377  [,)cico 12379  [,]cicc 12380  TopOpenctopn 16348  topGenctg 16364  fldccnfld 20019  intcnt 21101  cnccncf 22958   D cdv 23918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922
This theorem is referenced by:  dvfsumle  24075  dvfsumlem2  24081  loglesqrt  24790
  Copyright terms: Public domain W3C validator