MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvle Structured version   Visualization version   GIF version

Theorem dvle 26061
Description: If 𝐴(𝑥), 𝐶(𝑥) are differentiable functions and 𝐴‘ ≤ 𝐶, then for 𝑥𝑦, 𝐴(𝑦) − 𝐴(𝑥) ≤ 𝐶(𝑦) − 𝐶(𝑥). (Contributed by Mario Carneiro, 16-May-2016.)
Hypotheses
Ref Expression
dvle.m (𝜑𝑀 ∈ ℝ)
dvle.n (𝜑𝑁 ∈ ℝ)
dvle.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvle.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvle.c (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvle.d (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
dvle.f ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝐷)
dvle.x (𝜑𝑋 ∈ (𝑀[,]𝑁))
dvle.y (𝜑𝑌 ∈ (𝑀[,]𝑁))
dvle.l (𝜑𝑋𝑌)
dvle.p (𝑥 = 𝑋𝐴 = 𝑃)
dvle.q (𝑥 = 𝑋𝐶 = 𝑄)
dvle.r (𝑥 = 𝑌𝐴 = 𝑅)
dvle.s (𝑥 = 𝑌𝐶 = 𝑆)
Assertion
Ref Expression
dvle (𝜑 → (𝑅𝑃) ≤ (𝑆𝑄))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝑥,𝑃   𝑥,𝑄   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem dvle
StepHypRef Expression
1 dvle.r . . . 4 (𝑥 = 𝑌𝐴 = 𝑅)
21eleq1d 2824 . . 3 (𝑥 = 𝑌 → (𝐴 ∈ ℝ ↔ 𝑅 ∈ ℝ))
3 dvle.a . . . . 5 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
4 cncff 24933 . . . . 5 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
53, 4syl 17 . . . 4 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
6 eqid 2735 . . . . 5 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
76fmpt 7130 . . . 4 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
85, 7sylibr 234 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
9 dvle.y . . 3 (𝜑𝑌 ∈ (𝑀[,]𝑁))
102, 8, 9rspcdva 3623 . 2 (𝜑𝑅 ∈ ℝ)
11 dvle.s . . . . 5 (𝑥 = 𝑌𝐶 = 𝑆)
1211eleq1d 2824 . . . 4 (𝑥 = 𝑌 → (𝐶 ∈ ℝ ↔ 𝑆 ∈ ℝ))
13 dvle.c . . . . . 6 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ))
14 cncff 24933 . . . . . 6 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
1513, 14syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
16 eqid 2735 . . . . . 6 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶)
1716fmpt 7130 . . . . 5 (∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
1815, 17sylibr 234 . . . 4 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ)
1912, 18, 9rspcdva 3623 . . 3 (𝜑𝑆 ∈ ℝ)
20 dvle.q . . . . 5 (𝑥 = 𝑋𝐶 = 𝑄)
2120eleq1d 2824 . . . 4 (𝑥 = 𝑋 → (𝐶 ∈ ℝ ↔ 𝑄 ∈ ℝ))
22 dvle.x . . . 4 (𝜑𝑋 ∈ (𝑀[,]𝑁))
2321, 18, 22rspcdva 3623 . . 3 (𝜑𝑄 ∈ ℝ)
2419, 23resubcld 11689 . 2 (𝜑 → (𝑆𝑄) ∈ ℝ)
25 dvle.p . . . 4 (𝑥 = 𝑋𝐴 = 𝑃)
2625eleq1d 2824 . . 3 (𝑥 = 𝑋 → (𝐴 ∈ ℝ ↔ 𝑃 ∈ ℝ))
2726, 8, 22rspcdva 3623 . 2 (𝜑𝑃 ∈ ℝ)
2810recnd 11287 . . . . 5 (𝜑𝑅 ∈ ℂ)
2923recnd 11287 . . . . . 6 (𝜑𝑄 ∈ ℂ)
3019recnd 11287 . . . . . 6 (𝜑𝑆 ∈ ℂ)
3129, 30subcld 11618 . . . . 5 (𝜑 → (𝑄𝑆) ∈ ℂ)
3228, 31addcomd 11461 . . . 4 (𝜑 → (𝑅 + (𝑄𝑆)) = ((𝑄𝑆) + 𝑅))
3328, 30, 29subsub2d 11647 . . . 4 (𝜑 → (𝑅 − (𝑆𝑄)) = (𝑅 + (𝑄𝑆)))
3429, 30, 28subsubd 11646 . . . 4 (𝜑 → (𝑄 − (𝑆𝑅)) = ((𝑄𝑆) + 𝑅))
3532, 33, 343eqtr4d 2785 . . 3 (𝜑 → (𝑅 − (𝑆𝑄)) = (𝑄 − (𝑆𝑅)))
3619, 10resubcld 11689 . . . 4 (𝜑 → (𝑆𝑅) ∈ ℝ)
37 dvle.m . . . . . 6 (𝜑𝑀 ∈ ℝ)
38 dvle.n . . . . . 6 (𝜑𝑁 ∈ ℝ)
39 eqid 2735 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4039subcn 24902 . . . . . . 7 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
41 ax-resscn 11210 . . . . . . 7 ℝ ⊆ ℂ
42 resubcl 11571 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶𝐴) ∈ ℝ)
4339, 40, 13, 3, 41, 42cncfmpt2ss 24956 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℝ))
4441a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
45 iccssre 13466 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
4637, 38, 45syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
4715fvmptelcdm 7133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐶 ∈ ℝ)
485fvmptelcdm 7133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
4947, 48resubcld 11689 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐶𝐴) ∈ ℝ)
5049recnd 11287 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐶𝐴) ∈ ℂ)
5139tgioo2 24839 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
52 iccntr 24857 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁))
5337, 38, 52syl2anc 584 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁))
5444, 46, 50, 51, 39, 53dvmptntr 26024 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))) = (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐶𝐴))))
55 reelprrecn 11245 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
5655a1i 11 . . . . . . . . 9 (𝜑 → ℝ ∈ {ℝ, ℂ})
57 ioossicc 13470 . . . . . . . . . . 11 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
5857sseli 3991 . . . . . . . . . 10 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
5947recnd 11287 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐶 ∈ ℂ)
6058, 59sylan2 593 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℂ)
61 dvle.f . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝐷)
62 lerel 11323 . . . . . . . . . . 11 Rel ≤
6362brrelex2i 5746 . . . . . . . . . 10 (𝐵𝐷𝐷 ∈ V)
6461, 63syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐷 ∈ V)
65 dvle.d . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
6648recnd 11287 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
6758, 66sylan2 593 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℂ)
6862brrelex1i 5745 . . . . . . . . . 10 (𝐵𝐷𝐵 ∈ V)
6961, 68syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ V)
70 dvle.b . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
7156, 60, 64, 65, 67, 69, 70dvmptsub 26020 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐶𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)))
7254, 71eqtrd 2775 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)))
7358, 47sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℝ)
7473fmpttd 7135 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℝ)
75 ioossre 13445 . . . . . . . . . . . 12 (𝑀(,)𝑁) ⊆ ℝ
76 dvfre 26004 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ)
7774, 75, 76sylancl 586 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ)
7865dmeqd 5919 . . . . . . . . . . . . 13 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
7964ralrimiva 3144 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ V)
80 dmmptg 6264 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ V → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑀(,)𝑁))
8179, 80syl 17 . . . . . . . . . . . . 13 (𝜑 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑀(,)𝑁))
8278, 81eqtrd 2775 . . . . . . . . . . . 12 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑀(,)𝑁))
8365, 82feq12d 6725 . . . . . . . . . . 11 (𝜑 → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ))
8477, 83mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ)
8584fvmptelcdm 7133 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐷 ∈ ℝ)
8658, 48sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ)
8786fmpttd 7135 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ)
88 dvfre 26004 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
8987, 75, 88sylancl 586 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
9070dmeqd 5919 . . . . . . . . . . . . 13 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
9169ralrimiva 3144 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ V)
92 dmmptg 6264 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ V → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
9391, 92syl 17 . . . . . . . . . . . . 13 (𝜑 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
9490, 93eqtrd 2775 . . . . . . . . . . . 12 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁))
9570, 94feq12d 6725 . . . . . . . . . . 11 (𝜑 → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ))
9689, 95mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
9796fvmptelcdm 7133 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ ℝ)
9885, 97resubcld 11689 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (𝐷𝐵) ∈ ℝ)
9985, 97subge0d 11851 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (0 ≤ (𝐷𝐵) ↔ 𝐵𝐷))
10061, 99mpbird 257 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 0 ≤ (𝐷𝐵))
101 elrege0 13491 . . . . . . . 8 ((𝐷𝐵) ∈ (0[,)+∞) ↔ ((𝐷𝐵) ∈ ℝ ∧ 0 ≤ (𝐷𝐵)))
10298, 100, 101sylanbrc 583 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (𝐷𝐵) ∈ (0[,)+∞))
10372, 102fmpt3d 7136 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))):(𝑀(,)𝑁)⟶(0[,)+∞))
104 dvle.l . . . . . 6 (𝜑𝑋𝑌)
10537, 38, 43, 103, 22, 9, 104dvge0 26060 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) ≤ ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌))
10620, 25oveq12d 7449 . . . . . . 7 (𝑥 = 𝑋 → (𝐶𝐴) = (𝑄𝑃))
107 eqid 2735 . . . . . . 7 (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴)) = (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))
108 ovex 7464 . . . . . . 7 (𝐶𝐴) ∈ V
109106, 107, 108fvmpt3i 7021 . . . . . 6 (𝑋 ∈ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) = (𝑄𝑃))
11022, 109syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) = (𝑄𝑃))
11111, 1oveq12d 7449 . . . . . . 7 (𝑥 = 𝑌 → (𝐶𝐴) = (𝑆𝑅))
112111, 107, 108fvmpt3i 7021 . . . . . 6 (𝑌 ∈ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌) = (𝑆𝑅))
1139, 112syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌) = (𝑆𝑅))
114105, 110, 1133brtr3d 5179 . . . 4 (𝜑 → (𝑄𝑃) ≤ (𝑆𝑅))
11523, 27, 36, 114subled 11864 . . 3 (𝜑 → (𝑄 − (𝑆𝑅)) ≤ 𝑃)
11635, 115eqbrtrd 5170 . 2 (𝜑 → (𝑅 − (𝑆𝑄)) ≤ 𝑃)
11710, 24, 27, 116subled 11864 1 (𝜑 → (𝑅𝑃) ≤ (𝑆𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  wss 3963  {cpr 4633   class class class wbr 5148  cmpt 5231  dom cdm 5689  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153   + caddc 11156  +∞cpnf 11290  cle 11294  cmin 11490  (,)cioo 13384  [,)cico 13386  [,]cicc 13387  TopOpenctopn 17468  topGenctg 17484  fldccnfld 21382  intcnt 23041  cnccncf 24916   D cdv 25913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  dvfsumle  26075  dvfsumleOLD  26076  dvfsumlem2  26082  dvfsumlem2OLD  26083  loglesqrt  26819  dvle2  42054
  Copyright terms: Public domain W3C validator