MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvle Structured version   Visualization version   GIF version

Theorem dvle 24610
Description: If 𝐴(𝑥), 𝐶(𝑥) are differentiable functions and 𝐴‘ ≤ 𝐶, then for 𝑥𝑦, 𝐴(𝑦) − 𝐴(𝑥) ≤ 𝐶(𝑦) − 𝐶(𝑥). (Contributed by Mario Carneiro, 16-May-2016.)
Hypotheses
Ref Expression
dvle.m (𝜑𝑀 ∈ ℝ)
dvle.n (𝜑𝑁 ∈ ℝ)
dvle.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvle.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvle.c (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvle.d (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
dvle.f ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝐷)
dvle.x (𝜑𝑋 ∈ (𝑀[,]𝑁))
dvle.y (𝜑𝑌 ∈ (𝑀[,]𝑁))
dvle.l (𝜑𝑋𝑌)
dvle.p (𝑥 = 𝑋𝐴 = 𝑃)
dvle.q (𝑥 = 𝑋𝐶 = 𝑄)
dvle.r (𝑥 = 𝑌𝐴 = 𝑅)
dvle.s (𝑥 = 𝑌𝐶 = 𝑆)
Assertion
Ref Expression
dvle (𝜑 → (𝑅𝑃) ≤ (𝑆𝑄))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝑥,𝑃   𝑥,𝑄   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem dvle
StepHypRef Expression
1 dvle.r . . . 4 (𝑥 = 𝑌𝐴 = 𝑅)
21eleq1d 2874 . . 3 (𝑥 = 𝑌 → (𝐴 ∈ ℝ ↔ 𝑅 ∈ ℝ))
3 dvle.a . . . . 5 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
4 cncff 23498 . . . . 5 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
53, 4syl 17 . . . 4 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
6 eqid 2798 . . . . 5 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
76fmpt 6851 . . . 4 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
85, 7sylibr 237 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
9 dvle.y . . 3 (𝜑𝑌 ∈ (𝑀[,]𝑁))
102, 8, 9rspcdva 3573 . 2 (𝜑𝑅 ∈ ℝ)
11 dvle.s . . . . 5 (𝑥 = 𝑌𝐶 = 𝑆)
1211eleq1d 2874 . . . 4 (𝑥 = 𝑌 → (𝐶 ∈ ℝ ↔ 𝑆 ∈ ℝ))
13 dvle.c . . . . . 6 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ))
14 cncff 23498 . . . . . 6 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
1513, 14syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
16 eqid 2798 . . . . . 6 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶)
1716fmpt 6851 . . . . 5 (∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
1815, 17sylibr 237 . . . 4 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ)
1912, 18, 9rspcdva 3573 . . 3 (𝜑𝑆 ∈ ℝ)
20 dvle.q . . . . 5 (𝑥 = 𝑋𝐶 = 𝑄)
2120eleq1d 2874 . . . 4 (𝑥 = 𝑋 → (𝐶 ∈ ℝ ↔ 𝑄 ∈ ℝ))
22 dvle.x . . . 4 (𝜑𝑋 ∈ (𝑀[,]𝑁))
2321, 18, 22rspcdva 3573 . . 3 (𝜑𝑄 ∈ ℝ)
2419, 23resubcld 11057 . 2 (𝜑 → (𝑆𝑄) ∈ ℝ)
25 dvle.p . . . 4 (𝑥 = 𝑋𝐴 = 𝑃)
2625eleq1d 2874 . . 3 (𝑥 = 𝑋 → (𝐴 ∈ ℝ ↔ 𝑃 ∈ ℝ))
2726, 8, 22rspcdva 3573 . 2 (𝜑𝑃 ∈ ℝ)
2810recnd 10658 . . . . 5 (𝜑𝑅 ∈ ℂ)
2923recnd 10658 . . . . . 6 (𝜑𝑄 ∈ ℂ)
3019recnd 10658 . . . . . 6 (𝜑𝑆 ∈ ℂ)
3129, 30subcld 10986 . . . . 5 (𝜑 → (𝑄𝑆) ∈ ℂ)
3228, 31addcomd 10831 . . . 4 (𝜑 → (𝑅 + (𝑄𝑆)) = ((𝑄𝑆) + 𝑅))
3328, 30, 29subsub2d 11015 . . . 4 (𝜑 → (𝑅 − (𝑆𝑄)) = (𝑅 + (𝑄𝑆)))
3429, 30, 28subsubd 11014 . . . 4 (𝜑 → (𝑄 − (𝑆𝑅)) = ((𝑄𝑆) + 𝑅))
3532, 33, 343eqtr4d 2843 . . 3 (𝜑 → (𝑅 − (𝑆𝑄)) = (𝑄 − (𝑆𝑅)))
3619, 10resubcld 11057 . . . 4 (𝜑 → (𝑆𝑅) ∈ ℝ)
37 dvle.m . . . . . 6 (𝜑𝑀 ∈ ℝ)
38 dvle.n . . . . . 6 (𝜑𝑁 ∈ ℝ)
39 eqid 2798 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4039subcn 23471 . . . . . . 7 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
41 ax-resscn 10583 . . . . . . 7 ℝ ⊆ ℂ
42 resubcl 10939 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶𝐴) ∈ ℝ)
4339, 40, 13, 3, 41, 42cncfmpt2ss 23521 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℝ))
4441a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
45 iccssre 12807 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
4637, 38, 45syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
4715fvmptelrn 6854 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐶 ∈ ℝ)
485fvmptelrn 6854 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
4947, 48resubcld 11057 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐶𝐴) ∈ ℝ)
5049recnd 10658 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐶𝐴) ∈ ℂ)
5139tgioo2 23408 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
52 iccntr 23426 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁))
5337, 38, 52syl2anc 587 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁))
5444, 46, 50, 51, 39, 53dvmptntr 24574 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))) = (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐶𝐴))))
55 reelprrecn 10618 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
5655a1i 11 . . . . . . . . 9 (𝜑 → ℝ ∈ {ℝ, ℂ})
57 ioossicc 12811 . . . . . . . . . . 11 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
5857sseli 3911 . . . . . . . . . 10 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
5947recnd 10658 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐶 ∈ ℂ)
6058, 59sylan2 595 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℂ)
61 dvle.f . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝐷)
62 lerel 10694 . . . . . . . . . . 11 Rel ≤
6362brrelex2i 5573 . . . . . . . . . 10 (𝐵𝐷𝐷 ∈ V)
6461, 63syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐷 ∈ V)
65 dvle.d . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
6648recnd 10658 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
6758, 66sylan2 595 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℂ)
6862brrelex1i 5572 . . . . . . . . . 10 (𝐵𝐷𝐵 ∈ V)
6961, 68syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ V)
70 dvle.b . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
7156, 60, 64, 65, 67, 69, 70dvmptsub 24570 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐶𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)))
7254, 71eqtrd 2833 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)))
7358, 47sylan2 595 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℝ)
7473fmpttd 6856 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℝ)
75 ioossre 12786 . . . . . . . . . . . 12 (𝑀(,)𝑁) ⊆ ℝ
76 dvfre 24554 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ)
7774, 75, 76sylancl 589 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ)
7865dmeqd 5738 . . . . . . . . . . . . 13 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
7964ralrimiva 3149 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ V)
80 dmmptg 6063 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ V → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑀(,)𝑁))
8179, 80syl 17 . . . . . . . . . . . . 13 (𝜑 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑀(,)𝑁))
8278, 81eqtrd 2833 . . . . . . . . . . . 12 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑀(,)𝑁))
8365, 82feq12d 6475 . . . . . . . . . . 11 (𝜑 → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ))
8477, 83mpbid 235 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ)
8584fvmptelrn 6854 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐷 ∈ ℝ)
8658, 48sylan2 595 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ)
8786fmpttd 6856 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ)
88 dvfre 24554 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
8987, 75, 88sylancl 589 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
9070dmeqd 5738 . . . . . . . . . . . . 13 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
9169ralrimiva 3149 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ V)
92 dmmptg 6063 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ V → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
9391, 92syl 17 . . . . . . . . . . . . 13 (𝜑 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
9490, 93eqtrd 2833 . . . . . . . . . . . 12 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁))
9570, 94feq12d 6475 . . . . . . . . . . 11 (𝜑 → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ))
9689, 95mpbid 235 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
9796fvmptelrn 6854 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ ℝ)
9885, 97resubcld 11057 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (𝐷𝐵) ∈ ℝ)
9985, 97subge0d 11219 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (0 ≤ (𝐷𝐵) ↔ 𝐵𝐷))
10061, 99mpbird 260 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 0 ≤ (𝐷𝐵))
101 elrege0 12832 . . . . . . . 8 ((𝐷𝐵) ∈ (0[,)+∞) ↔ ((𝐷𝐵) ∈ ℝ ∧ 0 ≤ (𝐷𝐵)))
10298, 100, 101sylanbrc 586 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (𝐷𝐵) ∈ (0[,)+∞))
10372, 102fmpt3d 6857 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))):(𝑀(,)𝑁)⟶(0[,)+∞))
104 dvle.l . . . . . 6 (𝜑𝑋𝑌)
10537, 38, 43, 103, 22, 9, 104dvge0 24609 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) ≤ ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌))
10620, 25oveq12d 7153 . . . . . . 7 (𝑥 = 𝑋 → (𝐶𝐴) = (𝑄𝑃))
107 eqid 2798 . . . . . . 7 (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴)) = (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))
108 ovex 7168 . . . . . . 7 (𝐶𝐴) ∈ V
109106, 107, 108fvmpt3i 6750 . . . . . 6 (𝑋 ∈ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) = (𝑄𝑃))
11022, 109syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) = (𝑄𝑃))
11111, 1oveq12d 7153 . . . . . . 7 (𝑥 = 𝑌 → (𝐶𝐴) = (𝑆𝑅))
112111, 107, 108fvmpt3i 6750 . . . . . 6 (𝑌 ∈ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌) = (𝑆𝑅))
1139, 112syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌) = (𝑆𝑅))
114105, 110, 1133brtr3d 5061 . . . 4 (𝜑 → (𝑄𝑃) ≤ (𝑆𝑅))
11523, 27, 36, 114subled 11232 . . 3 (𝜑 → (𝑄 − (𝑆𝑅)) ≤ 𝑃)
11635, 115eqbrtrd 5052 . 2 (𝜑 → (𝑅 − (𝑆𝑄)) ≤ 𝑃)
11710, 24, 27, 116subled 11232 1 (𝜑 → (𝑅𝑃) ≤ (𝑆𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  {cpr 4527   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526   + caddc 10529  +∞cpnf 10661  cle 10665  cmin 10859  (,)cioo 12726  [,)cico 12728  [,]cicc 12729  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20091  intcnt 21622  cnccncf 23481   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by:  dvfsumle  24624  dvfsumlem2  24630  loglesqrt  25347
  Copyright terms: Public domain W3C validator