MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvle Structured version   Visualization version   GIF version

Theorem dvle 25934
Description: If 𝐴(𝑥), 𝐶(𝑥) are differentiable functions and 𝐴‘ ≤ 𝐶, then for 𝑥𝑦, 𝐴(𝑦) − 𝐴(𝑥) ≤ 𝐶(𝑦) − 𝐶(𝑥). (Contributed by Mario Carneiro, 16-May-2016.)
Hypotheses
Ref Expression
dvle.m (𝜑𝑀 ∈ ℝ)
dvle.n (𝜑𝑁 ∈ ℝ)
dvle.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvle.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvle.c (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvle.d (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
dvle.f ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝐷)
dvle.x (𝜑𝑋 ∈ (𝑀[,]𝑁))
dvle.y (𝜑𝑌 ∈ (𝑀[,]𝑁))
dvle.l (𝜑𝑋𝑌)
dvle.p (𝑥 = 𝑋𝐴 = 𝑃)
dvle.q (𝑥 = 𝑋𝐶 = 𝑄)
dvle.r (𝑥 = 𝑌𝐴 = 𝑅)
dvle.s (𝑥 = 𝑌𝐶 = 𝑆)
Assertion
Ref Expression
dvle (𝜑 → (𝑅𝑃) ≤ (𝑆𝑄))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝑥,𝑃   𝑥,𝑄   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem dvle
StepHypRef Expression
1 dvle.r . . . 4 (𝑥 = 𝑌𝐴 = 𝑅)
21eleq1d 2816 . . 3 (𝑥 = 𝑌 → (𝐴 ∈ ℝ ↔ 𝑅 ∈ ℝ))
3 dvle.a . . . . 5 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
4 cncff 24808 . . . . 5 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
53, 4syl 17 . . . 4 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
6 eqid 2731 . . . . 5 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
76fmpt 7038 . . . 4 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
85, 7sylibr 234 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
9 dvle.y . . 3 (𝜑𝑌 ∈ (𝑀[,]𝑁))
102, 8, 9rspcdva 3573 . 2 (𝜑𝑅 ∈ ℝ)
11 dvle.s . . . . 5 (𝑥 = 𝑌𝐶 = 𝑆)
1211eleq1d 2816 . . . 4 (𝑥 = 𝑌 → (𝐶 ∈ ℝ ↔ 𝑆 ∈ ℝ))
13 dvle.c . . . . . 6 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ))
14 cncff 24808 . . . . . 6 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
1513, 14syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
16 eqid 2731 . . . . . 6 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶)
1716fmpt 7038 . . . . 5 (∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
1815, 17sylibr 234 . . . 4 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ)
1912, 18, 9rspcdva 3573 . . 3 (𝜑𝑆 ∈ ℝ)
20 dvle.q . . . . 5 (𝑥 = 𝑋𝐶 = 𝑄)
2120eleq1d 2816 . . . 4 (𝑥 = 𝑋 → (𝐶 ∈ ℝ ↔ 𝑄 ∈ ℝ))
22 dvle.x . . . 4 (𝜑𝑋 ∈ (𝑀[,]𝑁))
2321, 18, 22rspcdva 3573 . . 3 (𝜑𝑄 ∈ ℝ)
2419, 23resubcld 11540 . 2 (𝜑 → (𝑆𝑄) ∈ ℝ)
25 dvle.p . . . 4 (𝑥 = 𝑋𝐴 = 𝑃)
2625eleq1d 2816 . . 3 (𝑥 = 𝑋 → (𝐴 ∈ ℝ ↔ 𝑃 ∈ ℝ))
2726, 8, 22rspcdva 3573 . 2 (𝜑𝑃 ∈ ℝ)
2810recnd 11135 . . . . 5 (𝜑𝑅 ∈ ℂ)
2923recnd 11135 . . . . . 6 (𝜑𝑄 ∈ ℂ)
3019recnd 11135 . . . . . 6 (𝜑𝑆 ∈ ℂ)
3129, 30subcld 11467 . . . . 5 (𝜑 → (𝑄𝑆) ∈ ℂ)
3228, 31addcomd 11310 . . . 4 (𝜑 → (𝑅 + (𝑄𝑆)) = ((𝑄𝑆) + 𝑅))
3328, 30, 29subsub2d 11496 . . . 4 (𝜑 → (𝑅 − (𝑆𝑄)) = (𝑅 + (𝑄𝑆)))
3429, 30, 28subsubd 11495 . . . 4 (𝜑 → (𝑄 − (𝑆𝑅)) = ((𝑄𝑆) + 𝑅))
3532, 33, 343eqtr4d 2776 . . 3 (𝜑 → (𝑅 − (𝑆𝑄)) = (𝑄 − (𝑆𝑅)))
3619, 10resubcld 11540 . . . 4 (𝜑 → (𝑆𝑅) ∈ ℝ)
37 dvle.m . . . . . 6 (𝜑𝑀 ∈ ℝ)
38 dvle.n . . . . . 6 (𝜑𝑁 ∈ ℝ)
39 eqid 2731 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4039subcn 24777 . . . . . . 7 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
41 ax-resscn 11058 . . . . . . 7 ℝ ⊆ ℂ
42 resubcl 11420 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶𝐴) ∈ ℝ)
4339, 40, 13, 3, 41, 42cncfmpt2ss 24831 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℝ))
4441a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
45 iccssre 13324 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
4637, 38, 45syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
4715fvmptelcdm 7041 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐶 ∈ ℝ)
485fvmptelcdm 7041 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
4947, 48resubcld 11540 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐶𝐴) ∈ ℝ)
5049recnd 11135 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐶𝐴) ∈ ℂ)
51 tgioo4 24715 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
52 iccntr 24732 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁))
5337, 38, 52syl2anc 584 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁))
5444, 46, 50, 51, 39, 53dvmptntr 25897 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))) = (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐶𝐴))))
55 reelprrecn 11093 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
5655a1i 11 . . . . . . . . 9 (𝜑 → ℝ ∈ {ℝ, ℂ})
57 ioossicc 13328 . . . . . . . . . . 11 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
5857sseli 3925 . . . . . . . . . 10 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
5947recnd 11135 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐶 ∈ ℂ)
6058, 59sylan2 593 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℂ)
61 dvle.f . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝐷)
62 lerel 11171 . . . . . . . . . . 11 Rel ≤
6362brrelex2i 5668 . . . . . . . . . 10 (𝐵𝐷𝐷 ∈ V)
6461, 63syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐷 ∈ V)
65 dvle.d . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
6648recnd 11135 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
6758, 66sylan2 593 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℂ)
6862brrelex1i 5667 . . . . . . . . . 10 (𝐵𝐷𝐵 ∈ V)
6961, 68syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ V)
70 dvle.b . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
7156, 60, 64, 65, 67, 69, 70dvmptsub 25893 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐶𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)))
7254, 71eqtrd 2766 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)))
7358, 47sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℝ)
7473fmpttd 7043 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℝ)
75 ioossre 13302 . . . . . . . . . . . 12 (𝑀(,)𝑁) ⊆ ℝ
76 dvfre 25877 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ)
7774, 75, 76sylancl 586 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ)
7865dmeqd 5840 . . . . . . . . . . . . 13 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
7964ralrimiva 3124 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ V)
80 dmmptg 6184 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ V → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑀(,)𝑁))
8179, 80syl 17 . . . . . . . . . . . . 13 (𝜑 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑀(,)𝑁))
8278, 81eqtrd 2766 . . . . . . . . . . . 12 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑀(,)𝑁))
8365, 82feq12d 6634 . . . . . . . . . . 11 (𝜑 → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ))
8477, 83mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ)
8584fvmptelcdm 7041 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐷 ∈ ℝ)
8658, 48sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ)
8786fmpttd 7043 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ)
88 dvfre 25877 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
8987, 75, 88sylancl 586 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
9070dmeqd 5840 . . . . . . . . . . . . 13 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
9169ralrimiva 3124 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ V)
92 dmmptg 6184 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ V → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
9391, 92syl 17 . . . . . . . . . . . . 13 (𝜑 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
9490, 93eqtrd 2766 . . . . . . . . . . . 12 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁))
9570, 94feq12d 6634 . . . . . . . . . . 11 (𝜑 → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ))
9689, 95mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
9796fvmptelcdm 7041 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ ℝ)
9885, 97resubcld 11540 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (𝐷𝐵) ∈ ℝ)
9985, 97subge0d 11702 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (0 ≤ (𝐷𝐵) ↔ 𝐵𝐷))
10061, 99mpbird 257 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 0 ≤ (𝐷𝐵))
101 elrege0 13349 . . . . . . . 8 ((𝐷𝐵) ∈ (0[,)+∞) ↔ ((𝐷𝐵) ∈ ℝ ∧ 0 ≤ (𝐷𝐵)))
10298, 100, 101sylanbrc 583 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (𝐷𝐵) ∈ (0[,)+∞))
10372, 102fmpt3d 7044 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))):(𝑀(,)𝑁)⟶(0[,)+∞))
104 dvle.l . . . . . 6 (𝜑𝑋𝑌)
10537, 38, 43, 103, 22, 9, 104dvge0 25933 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) ≤ ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌))
10620, 25oveq12d 7359 . . . . . . 7 (𝑥 = 𝑋 → (𝐶𝐴) = (𝑄𝑃))
107 eqid 2731 . . . . . . 7 (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴)) = (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))
108 ovex 7374 . . . . . . 7 (𝐶𝐴) ∈ V
109106, 107, 108fvmpt3i 6929 . . . . . 6 (𝑋 ∈ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) = (𝑄𝑃))
11022, 109syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) = (𝑄𝑃))
11111, 1oveq12d 7359 . . . . . . 7 (𝑥 = 𝑌 → (𝐶𝐴) = (𝑆𝑅))
112111, 107, 108fvmpt3i 6929 . . . . . 6 (𝑌 ∈ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌) = (𝑆𝑅))
1139, 112syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌) = (𝑆𝑅))
114105, 110, 1133brtr3d 5117 . . . 4 (𝜑 → (𝑄𝑃) ≤ (𝑆𝑅))
11523, 27, 36, 114subled 11715 . . 3 (𝜑 → (𝑄 − (𝑆𝑅)) ≤ 𝑃)
11635, 115eqbrtrd 5108 . 2 (𝜑 → (𝑅 − (𝑆𝑄)) ≤ 𝑃)
11710, 24, 27, 116subled 11715 1 (𝜑 → (𝑅𝑃) ≤ (𝑆𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897  {cpr 4573   class class class wbr 5086  cmpt 5167  dom cdm 5611  ran crn 5612  wf 6472  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001   + caddc 11004  +∞cpnf 11138  cle 11142  cmin 11339  (,)cioo 13240  [,)cico 13242  [,]cicc 13243  TopOpenctopn 17320  topGenctg 17336  fldccnfld 21286  intcnt 22927  cnccncf 24791   D cdv 25786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790
This theorem is referenced by:  dvfsumle  25948  dvfsumleOLD  25949  dvfsumlem2  25955  dvfsumlem2OLD  25956  loglesqrt  26693  dvle2  42105
  Copyright terms: Public domain W3C validator