| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > linindsi | Structured version Visualization version GIF version | ||
| Description: The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| islininds.b | ⊢ 𝐵 = (Base‘𝑀) |
| islininds.z | ⊢ 𝑍 = (0g‘𝑀) |
| islininds.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| islininds.e | ⊢ 𝐸 = (Base‘𝑅) |
| islininds.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| linindsi | ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | linindsv 48434 | . . 3 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ V ∧ 𝑀 ∈ V)) | |
| 2 | islininds.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 3 | islininds.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
| 4 | islininds.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 5 | islininds.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
| 6 | islininds.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 7 | 2, 3, 4, 5, 6 | islininds 48435 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑀 ∈ V) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
| 8 | 1, 7 | syl 17 | . 2 ⊢ (𝑆 linIndS 𝑀 → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
| 9 | 8 | ibi 267 | 1 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 𝒫 cpw 4563 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 finSupp cfsupp 9312 Basecbs 17179 Scalarcsca 17223 0gc0g 17402 linC clinc 48393 linIndS clininds 48429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-iota 6464 df-fv 6519 df-ov 7390 df-lininds 48431 |
| This theorem is referenced by: linindslinci 48437 linindscl 48440 |
| Copyright terms: Public domain | W3C validator |