![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > linindsi | Structured version Visualization version GIF version |
Description: The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
Ref | Expression |
---|---|
islininds.b | ⊢ 𝐵 = (Base‘𝑀) |
islininds.z | ⊢ 𝑍 = (0g‘𝑀) |
islininds.r | ⊢ 𝑅 = (Scalar‘𝑀) |
islininds.e | ⊢ 𝐸 = (Base‘𝑅) |
islininds.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
linindsi | ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | linindsv 48163 | . . 3 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ V ∧ 𝑀 ∈ V)) | |
2 | islininds.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
3 | islininds.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
4 | islininds.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑀) | |
5 | islininds.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
6 | islininds.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
7 | 2, 3, 4, 5, 6 | islininds 48164 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑀 ∈ V) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
8 | 1, 7 | syl 17 | . 2 ⊢ (𝑆 linIndS 𝑀 → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
9 | 8 | ibi 267 | 1 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 𝒫 cpw 4622 class class class wbr 5166 ‘cfv 6568 (class class class)co 7443 ↑m cmap 8878 finSupp cfsupp 9425 Basecbs 17252 Scalarcsca 17308 0gc0g 17493 linC clinc 48122 linIndS clininds 48158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5701 df-rel 5702 df-iota 6520 df-fv 6576 df-ov 7446 df-lininds 48160 |
This theorem is referenced by: linindslinci 48166 linindscl 48169 |
Copyright terms: Public domain | W3C validator |