![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > linindsi | Structured version Visualization version GIF version |
Description: The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
Ref | Expression |
---|---|
islininds.b | ⊢ 𝐵 = (Base‘𝑀) |
islininds.z | ⊢ 𝑍 = (0g‘𝑀) |
islininds.r | ⊢ 𝑅 = (Scalar‘𝑀) |
islininds.e | ⊢ 𝐸 = (Base‘𝑅) |
islininds.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
linindsi | ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | linindsv 48335 | . . 3 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ V ∧ 𝑀 ∈ V)) | |
2 | islininds.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
3 | islininds.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
4 | islininds.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑀) | |
5 | islininds.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
6 | islininds.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
7 | 2, 3, 4, 5, 6 | islininds 48336 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑀 ∈ V) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
8 | 1, 7 | syl 17 | . 2 ⊢ (𝑆 linIndS 𝑀 → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
9 | 8 | ibi 267 | 1 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3060 Vcvv 3479 𝒫 cpw 4598 class class class wbr 5141 ‘cfv 6559 (class class class)co 7429 ↑m cmap 8862 finSupp cfsupp 9397 Basecbs 17243 Scalarcsca 17296 0gc0g 17480 linC clinc 48294 linIndS clininds 48330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-xp 5689 df-rel 5690 df-iota 6512 df-fv 6567 df-ov 7432 df-lininds 48332 |
This theorem is referenced by: linindslinci 48338 linindscl 48341 |
Copyright terms: Public domain | W3C validator |