Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linindsi Structured version   Visualization version   GIF version

Theorem linindsi 47293
Description: The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islininds.b 𝐡 = (Baseβ€˜π‘€)
islininds.z 𝑍 = (0gβ€˜π‘€)
islininds.r 𝑅 = (Scalarβ€˜π‘€)
islininds.e 𝐸 = (Baseβ€˜π‘…)
islininds.0 0 = (0gβ€˜π‘…)
Assertion
Ref Expression
linindsi (𝑆 linIndS 𝑀 β†’ (𝑆 ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 )))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀,π‘₯   𝑆,𝑓,π‘₯
Allowed substitution hints:   𝐡(π‘₯,𝑓)   𝑅(π‘₯,𝑓)   𝐸(π‘₯)   0 (π‘₯,𝑓)   𝑍(π‘₯,𝑓)

Proof of Theorem linindsi
StepHypRef Expression
1 linindsv 47291 . . 3 (𝑆 linIndS 𝑀 β†’ (𝑆 ∈ V ∧ 𝑀 ∈ V))
2 islininds.b . . . 4 𝐡 = (Baseβ€˜π‘€)
3 islininds.z . . . 4 𝑍 = (0gβ€˜π‘€)
4 islininds.r . . . 4 𝑅 = (Scalarβ€˜π‘€)
5 islininds.e . . . 4 𝐸 = (Baseβ€˜π‘…)
6 islininds.0 . . . 4 0 = (0gβ€˜π‘…)
72, 3, 4, 5, 6islininds 47292 . . 3 ((𝑆 ∈ V ∧ 𝑀 ∈ V) β†’ (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 ))))
81, 7syl 17 . 2 (𝑆 linIndS 𝑀 β†’ (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 ))))
98ibi 267 1 (𝑆 linIndS 𝑀 β†’ (𝑆 ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 )))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  Vcvv 3473  π’« cpw 4602   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412   ↑m cmap 8826   finSupp cfsupp 9367  Basecbs 17151  Scalarcsca 17207  0gc0g 17392   linC clinc 47250   linIndS clininds 47286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-iota 6495  df-fv 6551  df-ov 7415  df-lininds 47288
This theorem is referenced by:  linindslinci  47294  linindscl  47297
  Copyright terms: Public domain W3C validator