Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > linindsi | Structured version Visualization version GIF version |
Description: The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
Ref | Expression |
---|---|
islininds.b | ⊢ 𝐵 = (Base‘𝑀) |
islininds.z | ⊢ 𝑍 = (0g‘𝑀) |
islininds.r | ⊢ 𝑅 = (Scalar‘𝑀) |
islininds.e | ⊢ 𝐸 = (Base‘𝑅) |
islininds.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
linindsi | ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | linindsv 45674 | . . 3 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ V ∧ 𝑀 ∈ V)) | |
2 | islininds.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
3 | islininds.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
4 | islininds.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑀) | |
5 | islininds.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
6 | islininds.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
7 | 2, 3, 4, 5, 6 | islininds 45675 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑀 ∈ V) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
8 | 1, 7 | syl 17 | . 2 ⊢ (𝑆 linIndS 𝑀 → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
9 | 8 | ibi 266 | 1 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 𝒫 cpw 4530 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 finSupp cfsupp 9058 Basecbs 16840 Scalarcsca 16891 0gc0g 17067 linC clinc 45633 linIndS clininds 45669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-iota 6376 df-fv 6426 df-ov 7258 df-lininds 45671 |
This theorem is referenced by: linindslinci 45677 linindscl 45680 |
Copyright terms: Public domain | W3C validator |