![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > linindsi | Structured version Visualization version GIF version |
Description: The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
Ref | Expression |
---|---|
islininds.b | β’ π΅ = (Baseβπ) |
islininds.z | β’ π = (0gβπ) |
islininds.r | β’ π = (Scalarβπ) |
islininds.e | β’ πΈ = (Baseβπ ) |
islininds.0 | β’ 0 = (0gβπ ) |
Ref | Expression |
---|---|
linindsi | β’ (π linIndS π β (π β π« π΅ β§ βπ β (πΈ βm π)((π finSupp 0 β§ (π( linC βπ)π) = π) β βπ₯ β π (πβπ₯) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | linindsv 47291 | . . 3 β’ (π linIndS π β (π β V β§ π β V)) | |
2 | islininds.b | . . . 4 β’ π΅ = (Baseβπ) | |
3 | islininds.z | . . . 4 β’ π = (0gβπ) | |
4 | islininds.r | . . . 4 β’ π = (Scalarβπ) | |
5 | islininds.e | . . . 4 β’ πΈ = (Baseβπ ) | |
6 | islininds.0 | . . . 4 β’ 0 = (0gβπ ) | |
7 | 2, 3, 4, 5, 6 | islininds 47292 | . . 3 β’ ((π β V β§ π β V) β (π linIndS π β (π β π« π΅ β§ βπ β (πΈ βm π)((π finSupp 0 β§ (π( linC βπ)π) = π) β βπ₯ β π (πβπ₯) = 0 )))) |
8 | 1, 7 | syl 17 | . 2 β’ (π linIndS π β (π linIndS π β (π β π« π΅ β§ βπ β (πΈ βm π)((π finSupp 0 β§ (π( linC βπ)π) = π) β βπ₯ β π (πβπ₯) = 0 )))) |
9 | 8 | ibi 267 | 1 β’ (π linIndS π β (π β π« π΅ β§ βπ β (πΈ βm π)((π finSupp 0 β§ (π( linC βπ)π) = π) β βπ₯ β π (πβπ₯) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 Vcvv 3473 π« cpw 4602 class class class wbr 5148 βcfv 6543 (class class class)co 7412 βm cmap 8826 finSupp cfsupp 9367 Basecbs 17151 Scalarcsca 17207 0gc0g 17392 linC clinc 47250 linIndS clininds 47286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-iota 6495 df-fv 6551 df-ov 7415 df-lininds 47288 |
This theorem is referenced by: linindslinci 47294 linindscl 47297 |
Copyright terms: Public domain | W3C validator |