Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linindsi Structured version   Visualization version   GIF version

Theorem linindsi 48337
Description: The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islininds.b 𝐵 = (Base‘𝑀)
islininds.z 𝑍 = (0g𝑀)
islininds.r 𝑅 = (Scalar‘𝑀)
islininds.e 𝐸 = (Base‘𝑅)
islininds.0 0 = (0g𝑅)
Assertion
Ref Expression
linindsi (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀,𝑥   𝑆,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝐸(𝑥)   0 (𝑥,𝑓)   𝑍(𝑥,𝑓)

Proof of Theorem linindsi
StepHypRef Expression
1 linindsv 48335 . . 3 (𝑆 linIndS 𝑀 → (𝑆 ∈ V ∧ 𝑀 ∈ V))
2 islininds.b . . . 4 𝐵 = (Base‘𝑀)
3 islininds.z . . . 4 𝑍 = (0g𝑀)
4 islininds.r . . . 4 𝑅 = (Scalar‘𝑀)
5 islininds.e . . . 4 𝐸 = (Base‘𝑅)
6 islininds.0 . . . 4 0 = (0g𝑅)
72, 3, 4, 5, 6islininds 48336 . . 3 ((𝑆 ∈ V ∧ 𝑀 ∈ V) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
81, 7syl 17 . 2 (𝑆 linIndS 𝑀 → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
98ibi 267 1 (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3060  Vcvv 3479  𝒫 cpw 4598   class class class wbr 5141  cfv 6559  (class class class)co 7429  m cmap 8862   finSupp cfsupp 9397  Basecbs 17243  Scalarcsca 17296  0gc0g 17480   linC clinc 48294   linIndS clininds 48330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-xp 5689  df-rel 5690  df-iota 6512  df-fv 6567  df-ov 7432  df-lininds 48332
This theorem is referenced by:  linindslinci  48338  linindscl  48341
  Copyright terms: Public domain W3C validator