| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlmod | Structured version Visualization version GIF version | ||
| Description: A Noetherian left module is a left module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| Ref | Expression |
|---|---|
| lnmlmod | ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
| 2 | 1 | islnm 43034 | . 2 ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑀)(𝑀 ↾s 𝑎) ∈ LFinGen)) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∀wral 3050 ‘cfv 6542 (class class class)co 7414 ↾s cress 17256 LModclmod 20831 LSubSpclss 20902 LFinGenclfig 43024 LNoeMclnm 43032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-iota 6495 df-fv 6550 df-ov 7417 df-lnm 43033 |
| This theorem is referenced by: lnmlsslnm 43038 lnmfg 43039 pwslnmlem1 43049 pwslnm 43051 |
| Copyright terms: Public domain | W3C validator |