| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlmod | Structured version Visualization version GIF version | ||
| Description: A Noetherian left module is a left module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| Ref | Expression |
|---|---|
| lnmlmod | ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
| 2 | 1 | islnm 43194 | . 2 ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑀)(𝑀 ↾s 𝑎) ∈ LFinGen)) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∀wral 3048 ‘cfv 6486 (class class class)co 7352 ↾s cress 17143 LModclmod 20795 LSubSpclss 20866 LFinGenclfig 43184 LNoeMclnm 43192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-lnm 43193 |
| This theorem is referenced by: lnmlsslnm 43198 lnmfg 43199 pwslnmlem1 43209 pwslnm 43211 |
| Copyright terms: Public domain | W3C validator |