Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlmod Structured version   Visualization version   GIF version

Theorem lnmlmod 40820
Description: A Noetherian left module is a left module. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Assertion
Ref Expression
lnmlmod (𝑀 ∈ LNoeM → 𝑀 ∈ LMod)

Proof of Theorem lnmlmod
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (LSubSp‘𝑀) = (LSubSp‘𝑀)
21islnm 40818 . 2 (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑀)(𝑀s 𝑎) ∈ LFinGen))
32simplbi 497 1 (𝑀 ∈ LNoeM → 𝑀 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  s cress 16867  LModclmod 20038  LSubSpclss 20108  LFinGenclfig 40808  LNoeMclnm 40816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-lnm 40817
This theorem is referenced by:  lnmlsslnm  40822  lnmfg  40823  pwslnmlem1  40833  pwslnm  40835
  Copyright terms: Public domain W3C validator