![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islnm2 | Structured version Visualization version GIF version |
Description: Property of being a Noetherian left module with finite generation expanded in terms of spans. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
islnm2.b | ⊢ 𝐵 = (Base‘𝑀) |
islnm2.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
islnm2.n | ⊢ 𝑁 = (LSpan‘𝑀) |
Ref | Expression |
---|---|
islnm2 | ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islnm2.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑀) | |
2 | 1 | islnm 39073 | . 2 ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
3 | eqid 2778 | . . . . . 6 ⊢ (𝑀 ↾s 𝑖) = (𝑀 ↾s 𝑖) | |
4 | islnm2.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑀) | |
5 | islnm2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
6 | 3, 1, 4, 5 | islssfg2 39067 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑖 ∈ 𝑆) → ((𝑀 ↾s 𝑖) ∈ LFinGen ↔ ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑔) = 𝑖)) |
7 | eqcom 2785 | . . . . . 6 ⊢ ((𝑁‘𝑔) = 𝑖 ↔ 𝑖 = (𝑁‘𝑔)) | |
8 | 7 | rexbii 3194 | . . . . 5 ⊢ (∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑔) = 𝑖 ↔ ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔)) |
9 | 6, 8 | syl6bb 279 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑖 ∈ 𝑆) → ((𝑀 ↾s 𝑖) ∈ LFinGen ↔ ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) |
10 | 9 | ralbidva 3146 | . . 3 ⊢ (𝑀 ∈ LMod → (∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen ↔ ∀𝑖 ∈ 𝑆 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) |
11 | 10 | pm5.32i 567 | . 2 ⊢ ((𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen) ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) |
12 | 2, 11 | bitri 267 | 1 ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∀wral 3088 ∃wrex 3089 ∩ cin 3830 𝒫 cpw 4423 ‘cfv 6190 (class class class)co 6978 Fincfn 8308 Basecbs 16342 ↾s cress 16343 LModclmod 19359 LSubSpclss 19428 LSpanclspn 19468 LFinGenclfig 39063 LNoeMclnm 39071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-int 4751 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-1st 7503 df-2nd 7504 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-nn 11442 df-2 11506 df-3 11507 df-4 11508 df-5 11509 df-6 11510 df-ndx 16345 df-slot 16346 df-base 16348 df-sets 16349 df-ress 16350 df-plusg 16437 df-sca 16440 df-vsca 16441 df-0g 16574 df-mgm 17713 df-sgrp 17755 df-mnd 17766 df-grp 17897 df-minusg 17898 df-sbg 17899 df-subg 18063 df-mgp 18966 df-ur 18978 df-ring 19025 df-lmod 19361 df-lss 19429 df-lsp 19469 df-lfig 39064 df-lnm 39072 |
This theorem is referenced by: filnm 39086 islnr2 39110 |
Copyright terms: Public domain | W3C validator |