Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmfg Structured version   Visualization version   GIF version

Theorem lnmfg 43073
Description: A Noetherian left module is finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Assertion
Ref Expression
lnmfg (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen)

Proof of Theorem lnmfg
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝑀) = (Base‘𝑀)
21ressid 17270 . 2 (𝑀 ∈ LNoeM → (𝑀s (Base‘𝑀)) = 𝑀)
3 lnmlmod 43070 . . . 4 (𝑀 ∈ LNoeM → 𝑀 ∈ LMod)
4 eqid 2736 . . . . 5 (LSubSp‘𝑀) = (LSubSp‘𝑀)
51, 4lss1 20900 . . . 4 (𝑀 ∈ LMod → (Base‘𝑀) ∈ (LSubSp‘𝑀))
63, 5syl 17 . . 3 (𝑀 ∈ LNoeM → (Base‘𝑀) ∈ (LSubSp‘𝑀))
7 eqid 2736 . . . 4 (𝑀s (Base‘𝑀)) = (𝑀s (Base‘𝑀))
84, 7lnmlssfg 43071 . . 3 ((𝑀 ∈ LNoeM ∧ (Base‘𝑀) ∈ (LSubSp‘𝑀)) → (𝑀s (Base‘𝑀)) ∈ LFinGen)
96, 8mpdan 687 . 2 (𝑀 ∈ LNoeM → (𝑀s (Base‘𝑀)) ∈ LFinGen)
102, 9eqeltrrd 2836 1 (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  LModclmod 20822  LSubSpclss 20893  LFinGenclfig 43058  LNoeMclnm 43066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-ress 17257  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-lmod 20824  df-lss 20894  df-lnm 43067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator