![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmfg | Structured version Visualization version GIF version |
Description: A Noetherian left module is finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
Ref | Expression |
---|---|
lnmfg | ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | 1 | ressid 17290 | . 2 ⊢ (𝑀 ∈ LNoeM → (𝑀 ↾s (Base‘𝑀)) = 𝑀) |
3 | lnmlmod 43068 | . . . 4 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) | |
4 | eqid 2735 | . . . . 5 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
5 | 1, 4 | lss1 20954 | . . . 4 ⊢ (𝑀 ∈ LMod → (Base‘𝑀) ∈ (LSubSp‘𝑀)) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑀 ∈ LNoeM → (Base‘𝑀) ∈ (LSubSp‘𝑀)) |
7 | eqid 2735 | . . . 4 ⊢ (𝑀 ↾s (Base‘𝑀)) = (𝑀 ↾s (Base‘𝑀)) | |
8 | 4, 7 | lnmlssfg 43069 | . . 3 ⊢ ((𝑀 ∈ LNoeM ∧ (Base‘𝑀) ∈ (LSubSp‘𝑀)) → (𝑀 ↾s (Base‘𝑀)) ∈ LFinGen) |
9 | 6, 8 | mpdan 687 | . 2 ⊢ (𝑀 ∈ LNoeM → (𝑀 ↾s (Base‘𝑀)) ∈ LFinGen) |
10 | 2, 9 | eqeltrrd 2840 | 1 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾s cress 17274 LModclmod 20875 LSubSpclss 20947 LFinGenclfig 43056 LNoeMclnm 43064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-ress 17275 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-lmod 20877 df-lss 20948 df-lnm 43065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |