![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmfg | Structured version Visualization version GIF version |
Description: A Noetherian left module is finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
Ref | Expression |
---|---|
lnmfg | ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | 1 | ressid 17185 | . 2 ⊢ (𝑀 ∈ LNoeM → (𝑀 ↾s (Base‘𝑀)) = 𝑀) |
3 | lnmlmod 41806 | . . . 4 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) | |
4 | eqid 2732 | . . . . 5 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
5 | 1, 4 | lss1 20541 | . . . 4 ⊢ (𝑀 ∈ LMod → (Base‘𝑀) ∈ (LSubSp‘𝑀)) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑀 ∈ LNoeM → (Base‘𝑀) ∈ (LSubSp‘𝑀)) |
7 | eqid 2732 | . . . 4 ⊢ (𝑀 ↾s (Base‘𝑀)) = (𝑀 ↾s (Base‘𝑀)) | |
8 | 4, 7 | lnmlssfg 41807 | . . 3 ⊢ ((𝑀 ∈ LNoeM ∧ (Base‘𝑀) ∈ (LSubSp‘𝑀)) → (𝑀 ↾s (Base‘𝑀)) ∈ LFinGen) |
9 | 6, 8 | mpdan 685 | . 2 ⊢ (𝑀 ∈ LNoeM → (𝑀 ↾s (Base‘𝑀)) ∈ LFinGen) |
10 | 2, 9 | eqeltrrd 2834 | 1 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 ↾s cress 17169 LModclmod 20463 LSubSpclss 20534 LFinGenclfig 41794 LNoeMclnm 41802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-ress 17170 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-lmod 20465 df-lss 20535 df-lnm 41803 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |