| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmfg | Structured version Visualization version GIF version | ||
| Description: A Noetherian left module is finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| Ref | Expression |
|---|---|
| lnmfg | ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | 1 | ressid 17221 | . 2 ⊢ (𝑀 ∈ LNoeM → (𝑀 ↾s (Base‘𝑀)) = 𝑀) |
| 3 | lnmlmod 43075 | . . . 4 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
| 5 | 1, 4 | lss1 20851 | . . . 4 ⊢ (𝑀 ∈ LMod → (Base‘𝑀) ∈ (LSubSp‘𝑀)) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑀 ∈ LNoeM → (Base‘𝑀) ∈ (LSubSp‘𝑀)) |
| 7 | eqid 2730 | . . . 4 ⊢ (𝑀 ↾s (Base‘𝑀)) = (𝑀 ↾s (Base‘𝑀)) | |
| 8 | 4, 7 | lnmlssfg 43076 | . . 3 ⊢ ((𝑀 ∈ LNoeM ∧ (Base‘𝑀) ∈ (LSubSp‘𝑀)) → (𝑀 ↾s (Base‘𝑀)) ∈ LFinGen) |
| 9 | 6, 8 | mpdan 687 | . 2 ⊢ (𝑀 ∈ LNoeM → (𝑀 ↾s (Base‘𝑀)) ∈ LFinGen) |
| 10 | 2, 9 | eqeltrrd 2830 | 1 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 LModclmod 20773 LSubSpclss 20844 LFinGenclfig 43063 LNoeMclnm 43071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-ress 17208 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-lmod 20775 df-lss 20845 df-lnm 43072 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |