Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmfg Structured version   Visualization version   GIF version

Theorem lnmfg 43075
Description: A Noetherian left module is finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Assertion
Ref Expression
lnmfg (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen)

Proof of Theorem lnmfg
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝑀) = (Base‘𝑀)
21ressid 17174 . 2 (𝑀 ∈ LNoeM → (𝑀s (Base‘𝑀)) = 𝑀)
3 lnmlmod 43072 . . . 4 (𝑀 ∈ LNoeM → 𝑀 ∈ LMod)
4 eqid 2729 . . . . 5 (LSubSp‘𝑀) = (LSubSp‘𝑀)
51, 4lss1 20860 . . . 4 (𝑀 ∈ LMod → (Base‘𝑀) ∈ (LSubSp‘𝑀))
63, 5syl 17 . . 3 (𝑀 ∈ LNoeM → (Base‘𝑀) ∈ (LSubSp‘𝑀))
7 eqid 2729 . . . 4 (𝑀s (Base‘𝑀)) = (𝑀s (Base‘𝑀))
84, 7lnmlssfg 43073 . . 3 ((𝑀 ∈ LNoeM ∧ (Base‘𝑀) ∈ (LSubSp‘𝑀)) → (𝑀s (Base‘𝑀)) ∈ LFinGen)
96, 8mpdan 687 . 2 (𝑀 ∈ LNoeM → (𝑀s (Base‘𝑀)) ∈ LFinGen)
102, 9eqeltrrd 2829 1 (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17139  s cress 17160  LModclmod 20782  LSubSpclss 20853  LFinGenclfig 43060  LNoeMclnm 43068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-ress 17161  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-lmod 20784  df-lss 20854  df-lnm 43069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator