Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmfg Structured version   Visualization version   GIF version

Theorem lnmfg 41824
Description: A Noetherian left module is finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Assertion
Ref Expression
lnmfg (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen)

Proof of Theorem lnmfg
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘𝑀) = (Base‘𝑀)
21ressid 17189 . 2 (𝑀 ∈ LNoeM → (𝑀s (Base‘𝑀)) = 𝑀)
3 lnmlmod 41821 . . . 4 (𝑀 ∈ LNoeM → 𝑀 ∈ LMod)
4 eqid 2733 . . . . 5 (LSubSp‘𝑀) = (LSubSp‘𝑀)
51, 4lss1 20549 . . . 4 (𝑀 ∈ LMod → (Base‘𝑀) ∈ (LSubSp‘𝑀))
63, 5syl 17 . . 3 (𝑀 ∈ LNoeM → (Base‘𝑀) ∈ (LSubSp‘𝑀))
7 eqid 2733 . . . 4 (𝑀s (Base‘𝑀)) = (𝑀s (Base‘𝑀))
84, 7lnmlssfg 41822 . . 3 ((𝑀 ∈ LNoeM ∧ (Base‘𝑀) ∈ (LSubSp‘𝑀)) → (𝑀s (Base‘𝑀)) ∈ LFinGen)
96, 8mpdan 686 . 2 (𝑀 ∈ LNoeM → (𝑀s (Base‘𝑀)) ∈ LFinGen)
102, 9eqeltrrd 2835 1 (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cfv 6544  (class class class)co 7409  Basecbs 17144  s cress 17173  LModclmod 20471  LSubSpclss 20542  LFinGenclfig 41809  LNoeMclnm 41817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-ress 17174  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-lmod 20473  df-lss 20543  df-lnm 41818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator