Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmfg | Structured version Visualization version GIF version |
Description: A Noetherian left module is finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
Ref | Expression |
---|---|
lnmfg | ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | 1 | ressid 16952 | . 2 ⊢ (𝑀 ∈ LNoeM → (𝑀 ↾s (Base‘𝑀)) = 𝑀) |
3 | lnmlmod 40901 | . . . 4 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) | |
4 | eqid 2740 | . . . . 5 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
5 | 1, 4 | lss1 20198 | . . . 4 ⊢ (𝑀 ∈ LMod → (Base‘𝑀) ∈ (LSubSp‘𝑀)) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑀 ∈ LNoeM → (Base‘𝑀) ∈ (LSubSp‘𝑀)) |
7 | eqid 2740 | . . . 4 ⊢ (𝑀 ↾s (Base‘𝑀)) = (𝑀 ↾s (Base‘𝑀)) | |
8 | 4, 7 | lnmlssfg 40902 | . . 3 ⊢ ((𝑀 ∈ LNoeM ∧ (Base‘𝑀) ∈ (LSubSp‘𝑀)) → (𝑀 ↾s (Base‘𝑀)) ∈ LFinGen) |
9 | 6, 8 | mpdan 684 | . 2 ⊢ (𝑀 ∈ LNoeM → (𝑀 ↾s (Base‘𝑀)) ∈ LFinGen) |
10 | 2, 9 | eqeltrrd 2842 | 1 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 ↾s cress 16939 LModclmod 20121 LSubSpclss 20191 LFinGenclfig 40889 LNoeMclnm 40897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-ress 16940 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-lmod 20123 df-lss 20192 df-lnm 40898 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |