Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlsslnm Structured version   Visualization version   GIF version

Theorem lnmlsslnm 40906
Description: All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lnmlssfg.s 𝑆 = (LSubSp‘𝑀)
lnmlssfg.r 𝑅 = (𝑀s 𝑈)
Assertion
Ref Expression
lnmlsslnm ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LNoeM)

Proof of Theorem lnmlsslnm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lnmlmod 40904 . . 3 (𝑀 ∈ LNoeM → 𝑀 ∈ LMod)
2 lnmlssfg.r . . . 4 𝑅 = (𝑀s 𝑈)
3 lnmlssfg.s . . . 4 𝑆 = (LSubSp‘𝑀)
42, 3lsslmod 20222 . . 3 ((𝑀 ∈ LMod ∧ 𝑈𝑆) → 𝑅 ∈ LMod)
51, 4sylan 580 . 2 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LMod)
62oveq1i 7285 . . . . 5 (𝑅s 𝑎) = ((𝑀s 𝑈) ↾s 𝑎)
7 simplr 766 . . . . . 6 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈𝑆)
8 eqid 2738 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2738 . . . . . . . . 9 (LSubSp‘𝑅) = (LSubSp‘𝑅)
108, 9lssss 20198 . . . . . . . 8 (𝑎 ∈ (LSubSp‘𝑅) → 𝑎 ⊆ (Base‘𝑅))
1110adantl 482 . . . . . . 7 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ (Base‘𝑅))
12 eqid 2738 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
1312, 3lssss 20198 . . . . . . . . 9 (𝑈𝑆𝑈 ⊆ (Base‘𝑀))
142, 12ressbas2 16949 . . . . . . . . 9 (𝑈 ⊆ (Base‘𝑀) → 𝑈 = (Base‘𝑅))
1513, 14syl 17 . . . . . . . 8 (𝑈𝑆𝑈 = (Base‘𝑅))
1615ad2antlr 724 . . . . . . 7 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 = (Base‘𝑅))
1711, 16sseqtrrd 3962 . . . . . 6 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎𝑈)
18 ressabs 16959 . . . . . 6 ((𝑈𝑆𝑎𝑈) → ((𝑀s 𝑈) ↾s 𝑎) = (𝑀s 𝑎))
197, 17, 18syl2anc 584 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → ((𝑀s 𝑈) ↾s 𝑎) = (𝑀s 𝑎))
206, 19eqtrid 2790 . . . 4 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅s 𝑎) = (𝑀s 𝑎))
21 simpll 764 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑀 ∈ LNoeM)
222, 3, 9lsslss 20223 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑈𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎𝑆𝑎𝑈)))
231, 22sylan 580 . . . . . 6 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎𝑆𝑎𝑈)))
2423simprbda 499 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎𝑆)
25 eqid 2738 . . . . . 6 (𝑀s 𝑎) = (𝑀s 𝑎)
263, 25lnmlssfg 40905 . . . . 5 ((𝑀 ∈ LNoeM ∧ 𝑎𝑆) → (𝑀s 𝑎) ∈ LFinGen)
2721, 24, 26syl2anc 584 . . . 4 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑀s 𝑎) ∈ LFinGen)
2820, 27eqeltrd 2839 . . 3 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅s 𝑎) ∈ LFinGen)
2928ralrimiva 3103 . 2 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅s 𝑎) ∈ LFinGen)
309islnm 40902 . 2 (𝑅 ∈ LNoeM ↔ (𝑅 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅s 𝑎) ∈ LFinGen))
315, 29, 30sylanbrc 583 1 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  LModclmod 20123  LSubSpclss 20193  LFinGenclfig 40892  LNoeMclnm 40900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-sca 16978  df-vsca 16979  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lss 20194  df-lnm 40901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator