![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlsslnm | Structured version Visualization version GIF version |
Description: All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lnmlssfg.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
lnmlssfg.r | ⊢ 𝑅 = (𝑀 ↾s 𝑈) |
Ref | Expression |
---|---|
lnmlsslnm | ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LNoeM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnmlmod 43068 | . . 3 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) | |
2 | lnmlssfg.r | . . . 4 ⊢ 𝑅 = (𝑀 ↾s 𝑈) | |
3 | lnmlssfg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
4 | 2, 3 | lsslmod 20976 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LMod) |
5 | 1, 4 | sylan 580 | . 2 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LMod) |
6 | 2 | oveq1i 7441 | . . . . 5 ⊢ (𝑅 ↾s 𝑎) = ((𝑀 ↾s 𝑈) ↾s 𝑎) |
7 | simplr 769 | . . . . . 6 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 ∈ 𝑆) | |
8 | eqid 2735 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2735 | . . . . . . . . 9 ⊢ (LSubSp‘𝑅) = (LSubSp‘𝑅) | |
10 | 8, 9 | lssss 20952 | . . . . . . . 8 ⊢ (𝑎 ∈ (LSubSp‘𝑅) → 𝑎 ⊆ (Base‘𝑅)) |
11 | 10 | adantl 481 | . . . . . . 7 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ (Base‘𝑅)) |
12 | eqid 2735 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
13 | 12, 3 | lssss 20952 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑀)) |
14 | 2, 12 | ressbas2 17283 | . . . . . . . . 9 ⊢ (𝑈 ⊆ (Base‘𝑀) → 𝑈 = (Base‘𝑅)) |
15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑆 → 𝑈 = (Base‘𝑅)) |
16 | 15 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 = (Base‘𝑅)) |
17 | 11, 16 | sseqtrrd 4037 | . . . . . 6 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ 𝑈) |
18 | ressabs 17295 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈) → ((𝑀 ↾s 𝑈) ↾s 𝑎) = (𝑀 ↾s 𝑎)) | |
19 | 7, 17, 18 | syl2anc 584 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → ((𝑀 ↾s 𝑈) ↾s 𝑎) = (𝑀 ↾s 𝑎)) |
20 | 6, 19 | eqtrid 2787 | . . . 4 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅 ↾s 𝑎) = (𝑀 ↾s 𝑎)) |
21 | simpll 767 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑀 ∈ LNoeM) | |
22 | 2, 3, 9 | lsslss 20977 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈))) |
23 | 1, 22 | sylan 580 | . . . . . 6 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈))) |
24 | 23 | simprbda 498 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ∈ 𝑆) |
25 | eqid 2735 | . . . . . 6 ⊢ (𝑀 ↾s 𝑎) = (𝑀 ↾s 𝑎) | |
26 | 3, 25 | lnmlssfg 43069 | . . . . 5 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑎 ∈ 𝑆) → (𝑀 ↾s 𝑎) ∈ LFinGen) |
27 | 21, 24, 26 | syl2anc 584 | . . . 4 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑀 ↾s 𝑎) ∈ LFinGen) |
28 | 20, 27 | eqeltrd 2839 | . . 3 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅 ↾s 𝑎) ∈ LFinGen) |
29 | 28 | ralrimiva 3144 | . 2 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅 ↾s 𝑎) ∈ LFinGen) |
30 | 9 | islnm 43066 | . 2 ⊢ (𝑅 ∈ LNoeM ↔ (𝑅 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅 ↾s 𝑎) ∈ LFinGen)) |
31 | 5, 29, 30 | sylanbrc 583 | 1 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LNoeM) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾s cress 17274 LModclmod 20875 LSubSpclss 20947 LFinGenclfig 43056 LNoeMclnm 43064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-sca 17314 df-vsca 17315 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-mgp 20153 df-ur 20200 df-ring 20253 df-lmod 20877 df-lss 20948 df-lnm 43065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |