| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlsslnm | Structured version Visualization version GIF version | ||
| Description: All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| lnmlssfg.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
| lnmlssfg.r | ⊢ 𝑅 = (𝑀 ↾s 𝑈) |
| Ref | Expression |
|---|---|
| lnmlsslnm | ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LNoeM) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnmlmod 43061 | . . 3 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) | |
| 2 | lnmlssfg.r | . . . 4 ⊢ 𝑅 = (𝑀 ↾s 𝑈) | |
| 3 | lnmlssfg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
| 4 | 2, 3 | lsslmod 20898 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LMod) |
| 5 | 1, 4 | sylan 580 | . 2 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LMod) |
| 6 | 2 | oveq1i 7379 | . . . . 5 ⊢ (𝑅 ↾s 𝑎) = ((𝑀 ↾s 𝑈) ↾s 𝑎) |
| 7 | simplr 768 | . . . . . 6 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 ∈ 𝑆) | |
| 8 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | eqid 2729 | . . . . . . . . 9 ⊢ (LSubSp‘𝑅) = (LSubSp‘𝑅) | |
| 10 | 8, 9 | lssss 20874 | . . . . . . . 8 ⊢ (𝑎 ∈ (LSubSp‘𝑅) → 𝑎 ⊆ (Base‘𝑅)) |
| 11 | 10 | adantl 481 | . . . . . . 7 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ (Base‘𝑅)) |
| 12 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 13 | 12, 3 | lssss 20874 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑀)) |
| 14 | 2, 12 | ressbas2 17184 | . . . . . . . . 9 ⊢ (𝑈 ⊆ (Base‘𝑀) → 𝑈 = (Base‘𝑅)) |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑆 → 𝑈 = (Base‘𝑅)) |
| 16 | 15 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 = (Base‘𝑅)) |
| 17 | 11, 16 | sseqtrrd 3981 | . . . . . 6 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ 𝑈) |
| 18 | ressabs 17194 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈) → ((𝑀 ↾s 𝑈) ↾s 𝑎) = (𝑀 ↾s 𝑎)) | |
| 19 | 7, 17, 18 | syl2anc 584 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → ((𝑀 ↾s 𝑈) ↾s 𝑎) = (𝑀 ↾s 𝑎)) |
| 20 | 6, 19 | eqtrid 2776 | . . . 4 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅 ↾s 𝑎) = (𝑀 ↾s 𝑎)) |
| 21 | simpll 766 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑀 ∈ LNoeM) | |
| 22 | 2, 3, 9 | lsslss 20899 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈))) |
| 23 | 1, 22 | sylan 580 | . . . . . 6 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈))) |
| 24 | 23 | simprbda 498 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ∈ 𝑆) |
| 25 | eqid 2729 | . . . . . 6 ⊢ (𝑀 ↾s 𝑎) = (𝑀 ↾s 𝑎) | |
| 26 | 3, 25 | lnmlssfg 43062 | . . . . 5 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑎 ∈ 𝑆) → (𝑀 ↾s 𝑎) ∈ LFinGen) |
| 27 | 21, 24, 26 | syl2anc 584 | . . . 4 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑀 ↾s 𝑎) ∈ LFinGen) |
| 28 | 20, 27 | eqeltrd 2828 | . . 3 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅 ↾s 𝑎) ∈ LFinGen) |
| 29 | 28 | ralrimiva 3125 | . 2 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅 ↾s 𝑎) ∈ LFinGen) |
| 30 | 9 | islnm 43059 | . 2 ⊢ (𝑅 ∈ LNoeM ↔ (𝑅 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅 ↾s 𝑎) ∈ LFinGen)) |
| 31 | 5, 29, 30 | sylanbrc 583 | 1 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LNoeM) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 LModclmod 20798 LSubSpclss 20869 LFinGenclfig 43049 LNoeMclnm 43057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-sca 17212 df-vsca 17213 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-sbg 18852 df-subg 19037 df-mgp 20061 df-ur 20102 df-ring 20155 df-lmod 20800 df-lss 20870 df-lnm 43058 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |