Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlsslnm Structured version   Visualization version   GIF version

Theorem lnmlsslnm 43173
Description: All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lnmlssfg.s 𝑆 = (LSubSp‘𝑀)
lnmlssfg.r 𝑅 = (𝑀s 𝑈)
Assertion
Ref Expression
lnmlsslnm ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LNoeM)

Proof of Theorem lnmlsslnm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lnmlmod 43171 . . 3 (𝑀 ∈ LNoeM → 𝑀 ∈ LMod)
2 lnmlssfg.r . . . 4 𝑅 = (𝑀s 𝑈)
3 lnmlssfg.s . . . 4 𝑆 = (LSubSp‘𝑀)
42, 3lsslmod 20893 . . 3 ((𝑀 ∈ LMod ∧ 𝑈𝑆) → 𝑅 ∈ LMod)
51, 4sylan 580 . 2 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LMod)
62oveq1i 7356 . . . . 5 (𝑅s 𝑎) = ((𝑀s 𝑈) ↾s 𝑎)
7 simplr 768 . . . . . 6 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈𝑆)
8 eqid 2731 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2731 . . . . . . . . 9 (LSubSp‘𝑅) = (LSubSp‘𝑅)
108, 9lssss 20869 . . . . . . . 8 (𝑎 ∈ (LSubSp‘𝑅) → 𝑎 ⊆ (Base‘𝑅))
1110adantl 481 . . . . . . 7 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ (Base‘𝑅))
12 eqid 2731 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
1312, 3lssss 20869 . . . . . . . . 9 (𝑈𝑆𝑈 ⊆ (Base‘𝑀))
142, 12ressbas2 17149 . . . . . . . . 9 (𝑈 ⊆ (Base‘𝑀) → 𝑈 = (Base‘𝑅))
1513, 14syl 17 . . . . . . . 8 (𝑈𝑆𝑈 = (Base‘𝑅))
1615ad2antlr 727 . . . . . . 7 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 = (Base‘𝑅))
1711, 16sseqtrrd 3967 . . . . . 6 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎𝑈)
18 ressabs 17159 . . . . . 6 ((𝑈𝑆𝑎𝑈) → ((𝑀s 𝑈) ↾s 𝑎) = (𝑀s 𝑎))
197, 17, 18syl2anc 584 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → ((𝑀s 𝑈) ↾s 𝑎) = (𝑀s 𝑎))
206, 19eqtrid 2778 . . . 4 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅s 𝑎) = (𝑀s 𝑎))
21 simpll 766 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑀 ∈ LNoeM)
222, 3, 9lsslss 20894 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑈𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎𝑆𝑎𝑈)))
231, 22sylan 580 . . . . . 6 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎𝑆𝑎𝑈)))
2423simprbda 498 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎𝑆)
25 eqid 2731 . . . . . 6 (𝑀s 𝑎) = (𝑀s 𝑎)
263, 25lnmlssfg 43172 . . . . 5 ((𝑀 ∈ LNoeM ∧ 𝑎𝑆) → (𝑀s 𝑎) ∈ LFinGen)
2721, 24, 26syl2anc 584 . . . 4 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑀s 𝑎) ∈ LFinGen)
2820, 27eqeltrd 2831 . . 3 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅s 𝑎) ∈ LFinGen)
2928ralrimiva 3124 . 2 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅s 𝑎) ∈ LFinGen)
309islnm 43169 . 2 (𝑅 ∈ LNoeM ↔ (𝑅 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅s 𝑎) ∈ LFinGen))
315, 29, 30sylanbrc 583 1 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  LModclmod 20793  LSubSpclss 20864  LFinGenclfig 43159  LNoeMclnm 43167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-sca 17177  df-vsca 17178  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-mgp 20059  df-ur 20100  df-ring 20153  df-lmod 20795  df-lss 20865  df-lnm 43168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator