Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlsslnm Structured version   Visualization version   GIF version

Theorem lnmlsslnm 43063
Description: All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lnmlssfg.s 𝑆 = (LSubSp‘𝑀)
lnmlssfg.r 𝑅 = (𝑀s 𝑈)
Assertion
Ref Expression
lnmlsslnm ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LNoeM)

Proof of Theorem lnmlsslnm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lnmlmod 43061 . . 3 (𝑀 ∈ LNoeM → 𝑀 ∈ LMod)
2 lnmlssfg.r . . . 4 𝑅 = (𝑀s 𝑈)
3 lnmlssfg.s . . . 4 𝑆 = (LSubSp‘𝑀)
42, 3lsslmod 20898 . . 3 ((𝑀 ∈ LMod ∧ 𝑈𝑆) → 𝑅 ∈ LMod)
51, 4sylan 580 . 2 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LMod)
62oveq1i 7379 . . . . 5 (𝑅s 𝑎) = ((𝑀s 𝑈) ↾s 𝑎)
7 simplr 768 . . . . . 6 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈𝑆)
8 eqid 2729 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2729 . . . . . . . . 9 (LSubSp‘𝑅) = (LSubSp‘𝑅)
108, 9lssss 20874 . . . . . . . 8 (𝑎 ∈ (LSubSp‘𝑅) → 𝑎 ⊆ (Base‘𝑅))
1110adantl 481 . . . . . . 7 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ (Base‘𝑅))
12 eqid 2729 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
1312, 3lssss 20874 . . . . . . . . 9 (𝑈𝑆𝑈 ⊆ (Base‘𝑀))
142, 12ressbas2 17184 . . . . . . . . 9 (𝑈 ⊆ (Base‘𝑀) → 𝑈 = (Base‘𝑅))
1513, 14syl 17 . . . . . . . 8 (𝑈𝑆𝑈 = (Base‘𝑅))
1615ad2antlr 727 . . . . . . 7 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 = (Base‘𝑅))
1711, 16sseqtrrd 3981 . . . . . 6 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎𝑈)
18 ressabs 17194 . . . . . 6 ((𝑈𝑆𝑎𝑈) → ((𝑀s 𝑈) ↾s 𝑎) = (𝑀s 𝑎))
197, 17, 18syl2anc 584 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → ((𝑀s 𝑈) ↾s 𝑎) = (𝑀s 𝑎))
206, 19eqtrid 2776 . . . 4 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅s 𝑎) = (𝑀s 𝑎))
21 simpll 766 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑀 ∈ LNoeM)
222, 3, 9lsslss 20899 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑈𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎𝑆𝑎𝑈)))
231, 22sylan 580 . . . . . 6 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎𝑆𝑎𝑈)))
2423simprbda 498 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎𝑆)
25 eqid 2729 . . . . . 6 (𝑀s 𝑎) = (𝑀s 𝑎)
263, 25lnmlssfg 43062 . . . . 5 ((𝑀 ∈ LNoeM ∧ 𝑎𝑆) → (𝑀s 𝑎) ∈ LFinGen)
2721, 24, 26syl2anc 584 . . . 4 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑀s 𝑎) ∈ LFinGen)
2820, 27eqeltrd 2828 . . 3 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅s 𝑎) ∈ LFinGen)
2928ralrimiva 3125 . 2 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅s 𝑎) ∈ LFinGen)
309islnm 43059 . 2 (𝑅 ∈ LNoeM ↔ (𝑅 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅s 𝑎) ∈ LFinGen))
315, 29, 30sylanbrc 583 1 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  LModclmod 20798  LSubSpclss 20869  LFinGenclfig 43049  LNoeMclnm 43057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-sca 17212  df-vsca 17213  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-mgp 20061  df-ur 20102  df-ring 20155  df-lmod 20800  df-lss 20870  df-lnm 43058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator