![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlsslnm | Structured version Visualization version GIF version |
Description: All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lnmlssfg.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
lnmlssfg.r | ⊢ 𝑅 = (𝑀 ↾s 𝑈) |
Ref | Expression |
---|---|
lnmlsslnm | ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LNoeM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnmlmod 42568 | . . 3 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) | |
2 | lnmlssfg.r | . . . 4 ⊢ 𝑅 = (𝑀 ↾s 𝑈) | |
3 | lnmlssfg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
4 | 2, 3 | lsslmod 20848 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LMod) |
5 | 1, 4 | sylan 578 | . 2 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LMod) |
6 | 2 | oveq1i 7426 | . . . . 5 ⊢ (𝑅 ↾s 𝑎) = ((𝑀 ↾s 𝑈) ↾s 𝑎) |
7 | simplr 767 | . . . . . 6 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 ∈ 𝑆) | |
8 | eqid 2725 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2725 | . . . . . . . . 9 ⊢ (LSubSp‘𝑅) = (LSubSp‘𝑅) | |
10 | 8, 9 | lssss 20824 | . . . . . . . 8 ⊢ (𝑎 ∈ (LSubSp‘𝑅) → 𝑎 ⊆ (Base‘𝑅)) |
11 | 10 | adantl 480 | . . . . . . 7 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ (Base‘𝑅)) |
12 | eqid 2725 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
13 | 12, 3 | lssss 20824 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑀)) |
14 | 2, 12 | ressbas2 17217 | . . . . . . . . 9 ⊢ (𝑈 ⊆ (Base‘𝑀) → 𝑈 = (Base‘𝑅)) |
15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑆 → 𝑈 = (Base‘𝑅)) |
16 | 15 | ad2antlr 725 | . . . . . . 7 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 = (Base‘𝑅)) |
17 | 11, 16 | sseqtrrd 4014 | . . . . . 6 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ 𝑈) |
18 | ressabs 17229 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈) → ((𝑀 ↾s 𝑈) ↾s 𝑎) = (𝑀 ↾s 𝑎)) | |
19 | 7, 17, 18 | syl2anc 582 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → ((𝑀 ↾s 𝑈) ↾s 𝑎) = (𝑀 ↾s 𝑎)) |
20 | 6, 19 | eqtrid 2777 | . . . 4 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅 ↾s 𝑎) = (𝑀 ↾s 𝑎)) |
21 | simpll 765 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑀 ∈ LNoeM) | |
22 | 2, 3, 9 | lsslss 20849 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈))) |
23 | 1, 22 | sylan 578 | . . . . . 6 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈))) |
24 | 23 | simprbda 497 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ∈ 𝑆) |
25 | eqid 2725 | . . . . . 6 ⊢ (𝑀 ↾s 𝑎) = (𝑀 ↾s 𝑎) | |
26 | 3, 25 | lnmlssfg 42569 | . . . . 5 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑎 ∈ 𝑆) → (𝑀 ↾s 𝑎) ∈ LFinGen) |
27 | 21, 24, 26 | syl2anc 582 | . . . 4 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑀 ↾s 𝑎) ∈ LFinGen) |
28 | 20, 27 | eqeltrd 2825 | . . 3 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅 ↾s 𝑎) ∈ LFinGen) |
29 | 28 | ralrimiva 3136 | . 2 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅 ↾s 𝑎) ∈ LFinGen) |
30 | 9 | islnm 42566 | . 2 ⊢ (𝑅 ∈ LNoeM ↔ (𝑅 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅 ↾s 𝑎) ∈ LFinGen)) |
31 | 5, 29, 30 | sylanbrc 581 | 1 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LNoeM) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ⊆ wss 3939 ‘cfv 6543 (class class class)co 7416 Basecbs 17179 ↾s cress 17208 LModclmod 20747 LSubSpclss 20819 LFinGenclfig 42556 LNoeMclnm 42564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-sca 17248 df-vsca 17249 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18897 df-minusg 18898 df-sbg 18899 df-subg 19082 df-mgp 20079 df-ur 20126 df-ring 20179 df-lmod 20749 df-lss 20820 df-lnm 42565 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |