![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlsslnm | Structured version Visualization version GIF version |
Description: All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lnmlssfg.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
lnmlssfg.r | ⊢ 𝑅 = (𝑀 ↾s 𝑈) |
Ref | Expression |
---|---|
lnmlsslnm | ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LNoeM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnmlmod 41806 | . . 3 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) | |
2 | lnmlssfg.r | . . . 4 ⊢ 𝑅 = (𝑀 ↾s 𝑈) | |
3 | lnmlssfg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
4 | 2, 3 | lsslmod 20563 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LMod) |
5 | 1, 4 | sylan 580 | . 2 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LMod) |
6 | 2 | oveq1i 7415 | . . . . 5 ⊢ (𝑅 ↾s 𝑎) = ((𝑀 ↾s 𝑈) ↾s 𝑎) |
7 | simplr 767 | . . . . . 6 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 ∈ 𝑆) | |
8 | eqid 2732 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2732 | . . . . . . . . 9 ⊢ (LSubSp‘𝑅) = (LSubSp‘𝑅) | |
10 | 8, 9 | lssss 20539 | . . . . . . . 8 ⊢ (𝑎 ∈ (LSubSp‘𝑅) → 𝑎 ⊆ (Base‘𝑅)) |
11 | 10 | adantl 482 | . . . . . . 7 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ (Base‘𝑅)) |
12 | eqid 2732 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
13 | 12, 3 | lssss 20539 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑀)) |
14 | 2, 12 | ressbas2 17178 | . . . . . . . . 9 ⊢ (𝑈 ⊆ (Base‘𝑀) → 𝑈 = (Base‘𝑅)) |
15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑆 → 𝑈 = (Base‘𝑅)) |
16 | 15 | ad2antlr 725 | . . . . . . 7 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 = (Base‘𝑅)) |
17 | 11, 16 | sseqtrrd 4022 | . . . . . 6 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ 𝑈) |
18 | ressabs 17190 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈) → ((𝑀 ↾s 𝑈) ↾s 𝑎) = (𝑀 ↾s 𝑎)) | |
19 | 7, 17, 18 | syl2anc 584 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → ((𝑀 ↾s 𝑈) ↾s 𝑎) = (𝑀 ↾s 𝑎)) |
20 | 6, 19 | eqtrid 2784 | . . . 4 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅 ↾s 𝑎) = (𝑀 ↾s 𝑎)) |
21 | simpll 765 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑀 ∈ LNoeM) | |
22 | 2, 3, 9 | lsslss 20564 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈))) |
23 | 1, 22 | sylan 580 | . . . . . 6 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈))) |
24 | 23 | simprbda 499 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ∈ 𝑆) |
25 | eqid 2732 | . . . . . 6 ⊢ (𝑀 ↾s 𝑎) = (𝑀 ↾s 𝑎) | |
26 | 3, 25 | lnmlssfg 41807 | . . . . 5 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑎 ∈ 𝑆) → (𝑀 ↾s 𝑎) ∈ LFinGen) |
27 | 21, 24, 26 | syl2anc 584 | . . . 4 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑀 ↾s 𝑎) ∈ LFinGen) |
28 | 20, 27 | eqeltrd 2833 | . . 3 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅 ↾s 𝑎) ∈ LFinGen) |
29 | 28 | ralrimiva 3146 | . 2 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅 ↾s 𝑎) ∈ LFinGen) |
30 | 9 | islnm 41804 | . 2 ⊢ (𝑅 ∈ LNoeM ↔ (𝑅 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅 ↾s 𝑎) ∈ LFinGen)) |
31 | 5, 29, 30 | sylanbrc 583 | 1 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LNoeM) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3947 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 ↾s cress 17169 LModclmod 20463 LSubSpclss 20534 LFinGenclfig 41794 LNoeMclnm 41802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-sca 17209 df-vsca 17210 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-mgp 19982 df-ur 19999 df-ring 20051 df-lmod 20465 df-lss 20535 df-lnm 41803 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |