Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlsslnm | Structured version Visualization version GIF version |
Description: All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lnmlssfg.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
lnmlssfg.r | ⊢ 𝑅 = (𝑀 ↾s 𝑈) |
Ref | Expression |
---|---|
lnmlsslnm | ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LNoeM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnmlmod 40499 | . . 3 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) | |
2 | lnmlssfg.r | . . . 4 ⊢ 𝑅 = (𝑀 ↾s 𝑈) | |
3 | lnmlssfg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
4 | 2, 3 | lsslmod 19854 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LMod) |
5 | 1, 4 | sylan 583 | . 2 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LMod) |
6 | 2 | oveq1i 7183 | . . . . 5 ⊢ (𝑅 ↾s 𝑎) = ((𝑀 ↾s 𝑈) ↾s 𝑎) |
7 | simplr 769 | . . . . . 6 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 ∈ 𝑆) | |
8 | eqid 2739 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2739 | . . . . . . . . 9 ⊢ (LSubSp‘𝑅) = (LSubSp‘𝑅) | |
10 | 8, 9 | lssss 19830 | . . . . . . . 8 ⊢ (𝑎 ∈ (LSubSp‘𝑅) → 𝑎 ⊆ (Base‘𝑅)) |
11 | 10 | adantl 485 | . . . . . . 7 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ (Base‘𝑅)) |
12 | eqid 2739 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
13 | 12, 3 | lssss 19830 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑀)) |
14 | 2, 12 | ressbas2 16661 | . . . . . . . . 9 ⊢ (𝑈 ⊆ (Base‘𝑀) → 𝑈 = (Base‘𝑅)) |
15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑆 → 𝑈 = (Base‘𝑅)) |
16 | 15 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 = (Base‘𝑅)) |
17 | 11, 16 | sseqtrrd 3919 | . . . . . 6 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ 𝑈) |
18 | ressabs 16669 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈) → ((𝑀 ↾s 𝑈) ↾s 𝑎) = (𝑀 ↾s 𝑎)) | |
19 | 7, 17, 18 | syl2anc 587 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → ((𝑀 ↾s 𝑈) ↾s 𝑎) = (𝑀 ↾s 𝑎)) |
20 | 6, 19 | syl5eq 2786 | . . . 4 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅 ↾s 𝑎) = (𝑀 ↾s 𝑎)) |
21 | simpll 767 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑀 ∈ LNoeM) | |
22 | 2, 3, 9 | lsslss 19855 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈))) |
23 | 1, 22 | sylan 583 | . . . . . 6 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈))) |
24 | 23 | simprbda 502 | . . . . 5 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ∈ 𝑆) |
25 | eqid 2739 | . . . . . 6 ⊢ (𝑀 ↾s 𝑎) = (𝑀 ↾s 𝑎) | |
26 | 3, 25 | lnmlssfg 40500 | . . . . 5 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑎 ∈ 𝑆) → (𝑀 ↾s 𝑎) ∈ LFinGen) |
27 | 21, 24, 26 | syl2anc 587 | . . . 4 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑀 ↾s 𝑎) ∈ LFinGen) |
28 | 20, 27 | eqeltrd 2834 | . . 3 ⊢ (((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅 ↾s 𝑎) ∈ LFinGen) |
29 | 28 | ralrimiva 3097 | . 2 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅 ↾s 𝑎) ∈ LFinGen) |
30 | 9 | islnm 40497 | . 2 ⊢ (𝑅 ∈ LNoeM ↔ (𝑅 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅 ↾s 𝑎) ∈ LFinGen)) |
31 | 5, 29, 30 | sylanbrc 586 | 1 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LNoeM) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3054 ⊆ wss 3844 ‘cfv 6340 (class class class)co 7173 Basecbs 16589 ↾s cress 16590 LModclmod 19756 LSubSpclss 19825 LFinGenclfig 40487 LNoeMclnm 40495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-1st 7717 df-2nd 7718 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-er 8323 df-en 8559 df-dom 8560 df-sdom 8561 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-nn 11720 df-2 11782 df-3 11783 df-4 11784 df-5 11785 df-6 11786 df-ndx 16592 df-slot 16593 df-base 16595 df-sets 16596 df-ress 16597 df-plusg 16684 df-sca 16687 df-vsca 16688 df-0g 16821 df-mgm 17971 df-sgrp 18020 df-mnd 18031 df-grp 18225 df-minusg 18226 df-sbg 18227 df-subg 18397 df-mgp 19362 df-ur 19374 df-ring 19421 df-lmod 19758 df-lss 19826 df-lnm 40496 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |