Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlsslnm Structured version   Visualization version   GIF version

Theorem lnmlsslnm 43072
Description: All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lnmlssfg.s 𝑆 = (LSubSp‘𝑀)
lnmlssfg.r 𝑅 = (𝑀s 𝑈)
Assertion
Ref Expression
lnmlsslnm ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LNoeM)

Proof of Theorem lnmlsslnm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lnmlmod 43070 . . 3 (𝑀 ∈ LNoeM → 𝑀 ∈ LMod)
2 lnmlssfg.r . . . 4 𝑅 = (𝑀s 𝑈)
3 lnmlssfg.s . . . 4 𝑆 = (LSubSp‘𝑀)
42, 3lsslmod 20922 . . 3 ((𝑀 ∈ LMod ∧ 𝑈𝑆) → 𝑅 ∈ LMod)
51, 4sylan 580 . 2 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LMod)
62oveq1i 7420 . . . . 5 (𝑅s 𝑎) = ((𝑀s 𝑈) ↾s 𝑎)
7 simplr 768 . . . . . 6 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈𝑆)
8 eqid 2736 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2736 . . . . . . . . 9 (LSubSp‘𝑅) = (LSubSp‘𝑅)
108, 9lssss 20898 . . . . . . . 8 (𝑎 ∈ (LSubSp‘𝑅) → 𝑎 ⊆ (Base‘𝑅))
1110adantl 481 . . . . . . 7 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ (Base‘𝑅))
12 eqid 2736 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
1312, 3lssss 20898 . . . . . . . . 9 (𝑈𝑆𝑈 ⊆ (Base‘𝑀))
142, 12ressbas2 17264 . . . . . . . . 9 (𝑈 ⊆ (Base‘𝑀) → 𝑈 = (Base‘𝑅))
1513, 14syl 17 . . . . . . . 8 (𝑈𝑆𝑈 = (Base‘𝑅))
1615ad2antlr 727 . . . . . . 7 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 = (Base‘𝑅))
1711, 16sseqtrrd 4001 . . . . . 6 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎𝑈)
18 ressabs 17274 . . . . . 6 ((𝑈𝑆𝑎𝑈) → ((𝑀s 𝑈) ↾s 𝑎) = (𝑀s 𝑎))
197, 17, 18syl2anc 584 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → ((𝑀s 𝑈) ↾s 𝑎) = (𝑀s 𝑎))
206, 19eqtrid 2783 . . . 4 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅s 𝑎) = (𝑀s 𝑎))
21 simpll 766 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑀 ∈ LNoeM)
222, 3, 9lsslss 20923 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑈𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎𝑆𝑎𝑈)))
231, 22sylan 580 . . . . . 6 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎𝑆𝑎𝑈)))
2423simprbda 498 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎𝑆)
25 eqid 2736 . . . . . 6 (𝑀s 𝑎) = (𝑀s 𝑎)
263, 25lnmlssfg 43071 . . . . 5 ((𝑀 ∈ LNoeM ∧ 𝑎𝑆) → (𝑀s 𝑎) ∈ LFinGen)
2721, 24, 26syl2anc 584 . . . 4 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑀s 𝑎) ∈ LFinGen)
2820, 27eqeltrd 2835 . . 3 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅s 𝑎) ∈ LFinGen)
2928ralrimiva 3133 . 2 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅s 𝑎) ∈ LFinGen)
309islnm 43068 . 2 (𝑅 ∈ LNoeM ↔ (𝑅 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅s 𝑎) ∈ LFinGen))
315, 29, 30sylanbrc 583 1 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wss 3931  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  LModclmod 20822  LSubSpclss 20893  LFinGenclfig 43058  LNoeMclnm 43066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-sca 17292  df-vsca 17293  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20824  df-lss 20894  df-lnm 43067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator