Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwslnm | Structured version Visualization version GIF version |
Description: Finite powers of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
pwslnm.y | ⊢ 𝑌 = (𝑊 ↑s 𝐼) |
Ref | Expression |
---|---|
pwslnm | ⊢ ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwslnm.y | . 2 ⊢ 𝑌 = (𝑊 ↑s 𝐼) | |
2 | oveq2 7263 | . . . . . 6 ⊢ (𝑎 = ∅ → (𝑊 ↑s 𝑎) = (𝑊 ↑s ∅)) | |
3 | 2 | eleq1d 2823 | . . . . 5 ⊢ (𝑎 = ∅ → ((𝑊 ↑s 𝑎) ∈ LNoeM ↔ (𝑊 ↑s ∅) ∈ LNoeM)) |
4 | 3 | imbi2d 340 | . . . 4 ⊢ (𝑎 = ∅ → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊 ↑s ∅) ∈ LNoeM))) |
5 | oveq2 7263 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (𝑊 ↑s 𝑎) = (𝑊 ↑s 𝑏)) | |
6 | 5 | eleq1d 2823 | . . . . 5 ⊢ (𝑎 = 𝑏 → ((𝑊 ↑s 𝑎) ∈ LNoeM ↔ (𝑊 ↑s 𝑏) ∈ LNoeM)) |
7 | 6 | imbi2d 340 | . . . 4 ⊢ (𝑎 = 𝑏 → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊 ↑s 𝑏) ∈ LNoeM))) |
8 | oveq2 7263 | . . . . . 6 ⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑊 ↑s 𝑎) = (𝑊 ↑s (𝑏 ∪ {𝑐}))) | |
9 | 8 | eleq1d 2823 | . . . . 5 ⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑊 ↑s 𝑎) ∈ LNoeM ↔ (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM)) |
10 | 9 | imbi2d 340 | . . . 4 ⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM))) |
11 | oveq2 7263 | . . . . . 6 ⊢ (𝑎 = 𝐼 → (𝑊 ↑s 𝑎) = (𝑊 ↑s 𝐼)) | |
12 | 11 | eleq1d 2823 | . . . . 5 ⊢ (𝑎 = 𝐼 → ((𝑊 ↑s 𝑎) ∈ LNoeM ↔ (𝑊 ↑s 𝐼) ∈ LNoeM)) |
13 | 12 | imbi2d 340 | . . . 4 ⊢ (𝑎 = 𝐼 → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊 ↑s 𝐼) ∈ LNoeM))) |
14 | lnmlmod 40820 | . . . . 5 ⊢ (𝑊 ∈ LNoeM → 𝑊 ∈ LMod) | |
15 | eqid 2738 | . . . . . 6 ⊢ (𝑊 ↑s ∅) = (𝑊 ↑s ∅) | |
16 | 15 | pwslnmlem0 40832 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝑊 ↑s ∅) ∈ LNoeM) |
17 | 14, 16 | syl 17 | . . . 4 ⊢ (𝑊 ∈ LNoeM → (𝑊 ↑s ∅) ∈ LNoeM) |
18 | vex 3426 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
19 | snex 5349 | . . . . . . 7 ⊢ {𝑐} ∈ V | |
20 | eqid 2738 | . . . . . . 7 ⊢ (𝑊 ↑s 𝑏) = (𝑊 ↑s 𝑏) | |
21 | eqid 2738 | . . . . . . 7 ⊢ (𝑊 ↑s {𝑐}) = (𝑊 ↑s {𝑐}) | |
22 | eqid 2738 | . . . . . . 7 ⊢ (𝑊 ↑s (𝑏 ∪ {𝑐})) = (𝑊 ↑s (𝑏 ∪ {𝑐})) | |
23 | 14 | ad2antrl 724 | . . . . . . 7 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → 𝑊 ∈ LMod) |
24 | disjsn 4644 | . . . . . . . . 9 ⊢ ((𝑏 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐 ∈ 𝑏) | |
25 | 24 | biimpri 227 | . . . . . . . 8 ⊢ (¬ 𝑐 ∈ 𝑏 → (𝑏 ∩ {𝑐}) = ∅) |
26 | 25 | ad2antlr 723 | . . . . . . 7 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → (𝑏 ∩ {𝑐}) = ∅) |
27 | simprr 769 | . . . . . . 7 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → (𝑊 ↑s 𝑏) ∈ LNoeM) | |
28 | 21 | pwslnmlem1 40833 | . . . . . . . 8 ⊢ (𝑊 ∈ LNoeM → (𝑊 ↑s {𝑐}) ∈ LNoeM) |
29 | 28 | ad2antrl 724 | . . . . . . 7 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → (𝑊 ↑s {𝑐}) ∈ LNoeM) |
30 | 18, 19, 20, 21, 22, 23, 26, 27, 29 | pwslnmlem2 40834 | . . . . . 6 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM) |
31 | 30 | exp32 420 | . . . . 5 ⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → (𝑊 ∈ LNoeM → ((𝑊 ↑s 𝑏) ∈ LNoeM → (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM))) |
32 | 31 | a2d 29 | . . . 4 ⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑏) ∈ LNoeM) → (𝑊 ∈ LNoeM → (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM))) |
33 | 4, 7, 10, 13, 17, 32 | findcard2s 8910 | . . 3 ⊢ (𝐼 ∈ Fin → (𝑊 ∈ LNoeM → (𝑊 ↑s 𝐼) ∈ LNoeM)) |
34 | 33 | impcom 407 | . 2 ⊢ ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → (𝑊 ↑s 𝐼) ∈ LNoeM) |
35 | 1, 34 | eqeltrid 2843 | 1 ⊢ ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 (class class class)co 7255 Fincfn 8691 ↑s cpws 17074 LModclmod 20038 LNoeMclnm 40816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-ghm 18747 df-cntz 18838 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lmhm 20199 df-lmim 20200 df-lmic 20201 df-lfig 40809 df-lnm 40817 |
This theorem is referenced by: lnrfrlm 40859 |
Copyright terms: Public domain | W3C validator |