Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwslnm | Structured version Visualization version GIF version |
Description: Finite powers of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
pwslnm.y | ⊢ 𝑌 = (𝑊 ↑s 𝐼) |
Ref | Expression |
---|---|
pwslnm | ⊢ ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwslnm.y | . 2 ⊢ 𝑌 = (𝑊 ↑s 𝐼) | |
2 | oveq2 7283 | . . . . . 6 ⊢ (𝑎 = ∅ → (𝑊 ↑s 𝑎) = (𝑊 ↑s ∅)) | |
3 | 2 | eleq1d 2823 | . . . . 5 ⊢ (𝑎 = ∅ → ((𝑊 ↑s 𝑎) ∈ LNoeM ↔ (𝑊 ↑s ∅) ∈ LNoeM)) |
4 | 3 | imbi2d 341 | . . . 4 ⊢ (𝑎 = ∅ → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊 ↑s ∅) ∈ LNoeM))) |
5 | oveq2 7283 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (𝑊 ↑s 𝑎) = (𝑊 ↑s 𝑏)) | |
6 | 5 | eleq1d 2823 | . . . . 5 ⊢ (𝑎 = 𝑏 → ((𝑊 ↑s 𝑎) ∈ LNoeM ↔ (𝑊 ↑s 𝑏) ∈ LNoeM)) |
7 | 6 | imbi2d 341 | . . . 4 ⊢ (𝑎 = 𝑏 → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊 ↑s 𝑏) ∈ LNoeM))) |
8 | oveq2 7283 | . . . . . 6 ⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑊 ↑s 𝑎) = (𝑊 ↑s (𝑏 ∪ {𝑐}))) | |
9 | 8 | eleq1d 2823 | . . . . 5 ⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑊 ↑s 𝑎) ∈ LNoeM ↔ (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM)) |
10 | 9 | imbi2d 341 | . . . 4 ⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM))) |
11 | oveq2 7283 | . . . . . 6 ⊢ (𝑎 = 𝐼 → (𝑊 ↑s 𝑎) = (𝑊 ↑s 𝐼)) | |
12 | 11 | eleq1d 2823 | . . . . 5 ⊢ (𝑎 = 𝐼 → ((𝑊 ↑s 𝑎) ∈ LNoeM ↔ (𝑊 ↑s 𝐼) ∈ LNoeM)) |
13 | 12 | imbi2d 341 | . . . 4 ⊢ (𝑎 = 𝐼 → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊 ↑s 𝐼) ∈ LNoeM))) |
14 | lnmlmod 40904 | . . . . 5 ⊢ (𝑊 ∈ LNoeM → 𝑊 ∈ LMod) | |
15 | eqid 2738 | . . . . . 6 ⊢ (𝑊 ↑s ∅) = (𝑊 ↑s ∅) | |
16 | 15 | pwslnmlem0 40916 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝑊 ↑s ∅) ∈ LNoeM) |
17 | 14, 16 | syl 17 | . . . 4 ⊢ (𝑊 ∈ LNoeM → (𝑊 ↑s ∅) ∈ LNoeM) |
18 | vex 3436 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
19 | snex 5354 | . . . . . . 7 ⊢ {𝑐} ∈ V | |
20 | eqid 2738 | . . . . . . 7 ⊢ (𝑊 ↑s 𝑏) = (𝑊 ↑s 𝑏) | |
21 | eqid 2738 | . . . . . . 7 ⊢ (𝑊 ↑s {𝑐}) = (𝑊 ↑s {𝑐}) | |
22 | eqid 2738 | . . . . . . 7 ⊢ (𝑊 ↑s (𝑏 ∪ {𝑐})) = (𝑊 ↑s (𝑏 ∪ {𝑐})) | |
23 | 14 | ad2antrl 725 | . . . . . . 7 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → 𝑊 ∈ LMod) |
24 | disjsn 4647 | . . . . . . . . 9 ⊢ ((𝑏 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐 ∈ 𝑏) | |
25 | 24 | biimpri 227 | . . . . . . . 8 ⊢ (¬ 𝑐 ∈ 𝑏 → (𝑏 ∩ {𝑐}) = ∅) |
26 | 25 | ad2antlr 724 | . . . . . . 7 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → (𝑏 ∩ {𝑐}) = ∅) |
27 | simprr 770 | . . . . . . 7 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → (𝑊 ↑s 𝑏) ∈ LNoeM) | |
28 | 21 | pwslnmlem1 40917 | . . . . . . . 8 ⊢ (𝑊 ∈ LNoeM → (𝑊 ↑s {𝑐}) ∈ LNoeM) |
29 | 28 | ad2antrl 725 | . . . . . . 7 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → (𝑊 ↑s {𝑐}) ∈ LNoeM) |
30 | 18, 19, 20, 21, 22, 23, 26, 27, 29 | pwslnmlem2 40918 | . . . . . 6 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM) |
31 | 30 | exp32 421 | . . . . 5 ⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → (𝑊 ∈ LNoeM → ((𝑊 ↑s 𝑏) ∈ LNoeM → (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM))) |
32 | 31 | a2d 29 | . . . 4 ⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑏) ∈ LNoeM) → (𝑊 ∈ LNoeM → (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM))) |
33 | 4, 7, 10, 13, 17, 32 | findcard2s 8948 | . . 3 ⊢ (𝐼 ∈ Fin → (𝑊 ∈ LNoeM → (𝑊 ↑s 𝐼) ∈ LNoeM)) |
34 | 33 | impcom 408 | . 2 ⊢ ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → (𝑊 ↑s 𝐼) ∈ LNoeM) |
35 | 1, 34 | eqeltrid 2843 | 1 ⊢ ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 {csn 4561 (class class class)co 7275 Fincfn 8733 ↑s cpws 17157 LModclmod 20123 LNoeMclnm 40900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-prds 17158 df-pws 17160 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-ghm 18832 df-cntz 18923 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lmhm 20284 df-lmim 20285 df-lmic 20286 df-lfig 40893 df-lnm 40901 |
This theorem is referenced by: lnrfrlm 40943 |
Copyright terms: Public domain | W3C validator |