Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwslnm Structured version   Visualization version   GIF version

Theorem pwslnm 40038
Description: Finite powers of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
pwslnm.y 𝑌 = (𝑊s 𝐼)
Assertion
Ref Expression
pwslnm ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM)

Proof of Theorem pwslnm
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwslnm.y . 2 𝑌 = (𝑊s 𝐼)
2 oveq2 7143 . . . . . 6 (𝑎 = ∅ → (𝑊s 𝑎) = (𝑊s ∅))
32eleq1d 2874 . . . . 5 (𝑎 = ∅ → ((𝑊s 𝑎) ∈ LNoeM ↔ (𝑊s ∅) ∈ LNoeM))
43imbi2d 344 . . . 4 (𝑎 = ∅ → ((𝑊 ∈ LNoeM → (𝑊s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊s ∅) ∈ LNoeM)))
5 oveq2 7143 . . . . . 6 (𝑎 = 𝑏 → (𝑊s 𝑎) = (𝑊s 𝑏))
65eleq1d 2874 . . . . 5 (𝑎 = 𝑏 → ((𝑊s 𝑎) ∈ LNoeM ↔ (𝑊s 𝑏) ∈ LNoeM))
76imbi2d 344 . . . 4 (𝑎 = 𝑏 → ((𝑊 ∈ LNoeM → (𝑊s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊s 𝑏) ∈ LNoeM)))
8 oveq2 7143 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑊s 𝑎) = (𝑊s (𝑏 ∪ {𝑐})))
98eleq1d 2874 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑊s 𝑎) ∈ LNoeM ↔ (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM))
109imbi2d 344 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑊 ∈ LNoeM → (𝑊s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM)))
11 oveq2 7143 . . . . . 6 (𝑎 = 𝐼 → (𝑊s 𝑎) = (𝑊s 𝐼))
1211eleq1d 2874 . . . . 5 (𝑎 = 𝐼 → ((𝑊s 𝑎) ∈ LNoeM ↔ (𝑊s 𝐼) ∈ LNoeM))
1312imbi2d 344 . . . 4 (𝑎 = 𝐼 → ((𝑊 ∈ LNoeM → (𝑊s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊s 𝐼) ∈ LNoeM)))
14 lnmlmod 40023 . . . . 5 (𝑊 ∈ LNoeM → 𝑊 ∈ LMod)
15 eqid 2798 . . . . . 6 (𝑊s ∅) = (𝑊s ∅)
1615pwslnmlem0 40035 . . . . 5 (𝑊 ∈ LMod → (𝑊s ∅) ∈ LNoeM)
1714, 16syl 17 . . . 4 (𝑊 ∈ LNoeM → (𝑊s ∅) ∈ LNoeM)
18 vex 3444 . . . . . . 7 𝑏 ∈ V
19 snex 5297 . . . . . . 7 {𝑐} ∈ V
20 eqid 2798 . . . . . . 7 (𝑊s 𝑏) = (𝑊s 𝑏)
21 eqid 2798 . . . . . . 7 (𝑊s {𝑐}) = (𝑊s {𝑐})
22 eqid 2798 . . . . . . 7 (𝑊s (𝑏 ∪ {𝑐})) = (𝑊s (𝑏 ∪ {𝑐}))
2314ad2antrl 727 . . . . . . 7 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → 𝑊 ∈ LMod)
24 disjsn 4607 . . . . . . . . 9 ((𝑏 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐𝑏)
2524biimpri 231 . . . . . . . 8 𝑐𝑏 → (𝑏 ∩ {𝑐}) = ∅)
2625ad2antlr 726 . . . . . . 7 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → (𝑏 ∩ {𝑐}) = ∅)
27 simprr 772 . . . . . . 7 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → (𝑊s 𝑏) ∈ LNoeM)
2821pwslnmlem1 40036 . . . . . . . 8 (𝑊 ∈ LNoeM → (𝑊s {𝑐}) ∈ LNoeM)
2928ad2antrl 727 . . . . . . 7 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → (𝑊s {𝑐}) ∈ LNoeM)
3018, 19, 20, 21, 22, 23, 26, 27, 29pwslnmlem2 40037 . . . . . 6 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM)
3130exp32 424 . . . . 5 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → (𝑊 ∈ LNoeM → ((𝑊s 𝑏) ∈ LNoeM → (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM)))
3231a2d 29 . . . 4 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → ((𝑊 ∈ LNoeM → (𝑊s 𝑏) ∈ LNoeM) → (𝑊 ∈ LNoeM → (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM)))
334, 7, 10, 13, 17, 32findcard2s 8743 . . 3 (𝐼 ∈ Fin → (𝑊 ∈ LNoeM → (𝑊s 𝐼) ∈ LNoeM))
3433impcom 411 . 2 ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → (𝑊s 𝐼) ∈ LNoeM)
351, 34eqeltrid 2894 1 ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  cun 3879  cin 3880  c0 4243  {csn 4525  (class class class)co 7135  Fincfn 8492  s cpws 16712  LModclmod 19627  LNoeMclnm 40019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lmhm 19787  df-lmim 19788  df-lmic 19789  df-lfig 40012  df-lnm 40020
This theorem is referenced by:  lnrfrlm  40062
  Copyright terms: Public domain W3C validator