Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwslnm Structured version   Visualization version   GIF version

Theorem pwslnm 40835
Description: Finite powers of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
pwslnm.y 𝑌 = (𝑊s 𝐼)
Assertion
Ref Expression
pwslnm ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM)

Proof of Theorem pwslnm
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwslnm.y . 2 𝑌 = (𝑊s 𝐼)
2 oveq2 7263 . . . . . 6 (𝑎 = ∅ → (𝑊s 𝑎) = (𝑊s ∅))
32eleq1d 2823 . . . . 5 (𝑎 = ∅ → ((𝑊s 𝑎) ∈ LNoeM ↔ (𝑊s ∅) ∈ LNoeM))
43imbi2d 340 . . . 4 (𝑎 = ∅ → ((𝑊 ∈ LNoeM → (𝑊s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊s ∅) ∈ LNoeM)))
5 oveq2 7263 . . . . . 6 (𝑎 = 𝑏 → (𝑊s 𝑎) = (𝑊s 𝑏))
65eleq1d 2823 . . . . 5 (𝑎 = 𝑏 → ((𝑊s 𝑎) ∈ LNoeM ↔ (𝑊s 𝑏) ∈ LNoeM))
76imbi2d 340 . . . 4 (𝑎 = 𝑏 → ((𝑊 ∈ LNoeM → (𝑊s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊s 𝑏) ∈ LNoeM)))
8 oveq2 7263 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑊s 𝑎) = (𝑊s (𝑏 ∪ {𝑐})))
98eleq1d 2823 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑊s 𝑎) ∈ LNoeM ↔ (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM))
109imbi2d 340 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑊 ∈ LNoeM → (𝑊s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM)))
11 oveq2 7263 . . . . . 6 (𝑎 = 𝐼 → (𝑊s 𝑎) = (𝑊s 𝐼))
1211eleq1d 2823 . . . . 5 (𝑎 = 𝐼 → ((𝑊s 𝑎) ∈ LNoeM ↔ (𝑊s 𝐼) ∈ LNoeM))
1312imbi2d 340 . . . 4 (𝑎 = 𝐼 → ((𝑊 ∈ LNoeM → (𝑊s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊s 𝐼) ∈ LNoeM)))
14 lnmlmod 40820 . . . . 5 (𝑊 ∈ LNoeM → 𝑊 ∈ LMod)
15 eqid 2738 . . . . . 6 (𝑊s ∅) = (𝑊s ∅)
1615pwslnmlem0 40832 . . . . 5 (𝑊 ∈ LMod → (𝑊s ∅) ∈ LNoeM)
1714, 16syl 17 . . . 4 (𝑊 ∈ LNoeM → (𝑊s ∅) ∈ LNoeM)
18 vex 3426 . . . . . . 7 𝑏 ∈ V
19 snex 5349 . . . . . . 7 {𝑐} ∈ V
20 eqid 2738 . . . . . . 7 (𝑊s 𝑏) = (𝑊s 𝑏)
21 eqid 2738 . . . . . . 7 (𝑊s {𝑐}) = (𝑊s {𝑐})
22 eqid 2738 . . . . . . 7 (𝑊s (𝑏 ∪ {𝑐})) = (𝑊s (𝑏 ∪ {𝑐}))
2314ad2antrl 724 . . . . . . 7 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → 𝑊 ∈ LMod)
24 disjsn 4644 . . . . . . . . 9 ((𝑏 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐𝑏)
2524biimpri 227 . . . . . . . 8 𝑐𝑏 → (𝑏 ∩ {𝑐}) = ∅)
2625ad2antlr 723 . . . . . . 7 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → (𝑏 ∩ {𝑐}) = ∅)
27 simprr 769 . . . . . . 7 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → (𝑊s 𝑏) ∈ LNoeM)
2821pwslnmlem1 40833 . . . . . . . 8 (𝑊 ∈ LNoeM → (𝑊s {𝑐}) ∈ LNoeM)
2928ad2antrl 724 . . . . . . 7 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → (𝑊s {𝑐}) ∈ LNoeM)
3018, 19, 20, 21, 22, 23, 26, 27, 29pwslnmlem2 40834 . . . . . 6 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM)
3130exp32 420 . . . . 5 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → (𝑊 ∈ LNoeM → ((𝑊s 𝑏) ∈ LNoeM → (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM)))
3231a2d 29 . . . 4 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → ((𝑊 ∈ LNoeM → (𝑊s 𝑏) ∈ LNoeM) → (𝑊 ∈ LNoeM → (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM)))
334, 7, 10, 13, 17, 32findcard2s 8910 . . 3 (𝐼 ∈ Fin → (𝑊 ∈ LNoeM → (𝑊s 𝐼) ∈ LNoeM))
3433impcom 407 . 2 ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → (𝑊s 𝐼) ∈ LNoeM)
351, 34eqeltrid 2843 1 ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  cun 3881  cin 3882  c0 4253  {csn 4558  (class class class)co 7255  Fincfn 8691  s cpws 17074  LModclmod 20038  LNoeMclnm 40816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lmhm 20199  df-lmim 20200  df-lmic 20201  df-lfig 40809  df-lnm 40817
This theorem is referenced by:  lnrfrlm  40859
  Copyright terms: Public domain W3C validator