| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pwslnm | Structured version Visualization version GIF version | ||
| Description: Finite powers of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwslnm.y | ⊢ 𝑌 = (𝑊 ↑s 𝐼) |
| Ref | Expression |
|---|---|
| pwslnm | ⊢ ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwslnm.y | . 2 ⊢ 𝑌 = (𝑊 ↑s 𝐼) | |
| 2 | oveq2 7398 | . . . . . 6 ⊢ (𝑎 = ∅ → (𝑊 ↑s 𝑎) = (𝑊 ↑s ∅)) | |
| 3 | 2 | eleq1d 2814 | . . . . 5 ⊢ (𝑎 = ∅ → ((𝑊 ↑s 𝑎) ∈ LNoeM ↔ (𝑊 ↑s ∅) ∈ LNoeM)) |
| 4 | 3 | imbi2d 340 | . . . 4 ⊢ (𝑎 = ∅ → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊 ↑s ∅) ∈ LNoeM))) |
| 5 | oveq2 7398 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (𝑊 ↑s 𝑎) = (𝑊 ↑s 𝑏)) | |
| 6 | 5 | eleq1d 2814 | . . . . 5 ⊢ (𝑎 = 𝑏 → ((𝑊 ↑s 𝑎) ∈ LNoeM ↔ (𝑊 ↑s 𝑏) ∈ LNoeM)) |
| 7 | 6 | imbi2d 340 | . . . 4 ⊢ (𝑎 = 𝑏 → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊 ↑s 𝑏) ∈ LNoeM))) |
| 8 | oveq2 7398 | . . . . . 6 ⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑊 ↑s 𝑎) = (𝑊 ↑s (𝑏 ∪ {𝑐}))) | |
| 9 | 8 | eleq1d 2814 | . . . . 5 ⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑊 ↑s 𝑎) ∈ LNoeM ↔ (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM)) |
| 10 | 9 | imbi2d 340 | . . . 4 ⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM))) |
| 11 | oveq2 7398 | . . . . . 6 ⊢ (𝑎 = 𝐼 → (𝑊 ↑s 𝑎) = (𝑊 ↑s 𝐼)) | |
| 12 | 11 | eleq1d 2814 | . . . . 5 ⊢ (𝑎 = 𝐼 → ((𝑊 ↑s 𝑎) ∈ LNoeM ↔ (𝑊 ↑s 𝐼) ∈ LNoeM)) |
| 13 | 12 | imbi2d 340 | . . . 4 ⊢ (𝑎 = 𝐼 → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊 ↑s 𝐼) ∈ LNoeM))) |
| 14 | lnmlmod 43075 | . . . . 5 ⊢ (𝑊 ∈ LNoeM → 𝑊 ∈ LMod) | |
| 15 | eqid 2730 | . . . . . 6 ⊢ (𝑊 ↑s ∅) = (𝑊 ↑s ∅) | |
| 16 | 15 | pwslnmlem0 43087 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝑊 ↑s ∅) ∈ LNoeM) |
| 17 | 14, 16 | syl 17 | . . . 4 ⊢ (𝑊 ∈ LNoeM → (𝑊 ↑s ∅) ∈ LNoeM) |
| 18 | vex 3454 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
| 19 | vsnex 5392 | . . . . . . 7 ⊢ {𝑐} ∈ V | |
| 20 | eqid 2730 | . . . . . . 7 ⊢ (𝑊 ↑s 𝑏) = (𝑊 ↑s 𝑏) | |
| 21 | eqid 2730 | . . . . . . 7 ⊢ (𝑊 ↑s {𝑐}) = (𝑊 ↑s {𝑐}) | |
| 22 | eqid 2730 | . . . . . . 7 ⊢ (𝑊 ↑s (𝑏 ∪ {𝑐})) = (𝑊 ↑s (𝑏 ∪ {𝑐})) | |
| 23 | 14 | ad2antrl 728 | . . . . . . 7 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → 𝑊 ∈ LMod) |
| 24 | disjsn 4678 | . . . . . . . . 9 ⊢ ((𝑏 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐 ∈ 𝑏) | |
| 25 | 24 | biimpri 228 | . . . . . . . 8 ⊢ (¬ 𝑐 ∈ 𝑏 → (𝑏 ∩ {𝑐}) = ∅) |
| 26 | 25 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → (𝑏 ∩ {𝑐}) = ∅) |
| 27 | simprr 772 | . . . . . . 7 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → (𝑊 ↑s 𝑏) ∈ LNoeM) | |
| 28 | 21 | pwslnmlem1 43088 | . . . . . . . 8 ⊢ (𝑊 ∈ LNoeM → (𝑊 ↑s {𝑐}) ∈ LNoeM) |
| 29 | 28 | ad2antrl 728 | . . . . . . 7 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → (𝑊 ↑s {𝑐}) ∈ LNoeM) |
| 30 | 18, 19, 20, 21, 22, 23, 26, 27, 29 | pwslnmlem2 43089 | . . . . . 6 ⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊 ↑s 𝑏) ∈ LNoeM)) → (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM) |
| 31 | 30 | exp32 420 | . . . . 5 ⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → (𝑊 ∈ LNoeM → ((𝑊 ↑s 𝑏) ∈ LNoeM → (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM))) |
| 32 | 31 | a2d 29 | . . . 4 ⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → ((𝑊 ∈ LNoeM → (𝑊 ↑s 𝑏) ∈ LNoeM) → (𝑊 ∈ LNoeM → (𝑊 ↑s (𝑏 ∪ {𝑐})) ∈ LNoeM))) |
| 33 | 4, 7, 10, 13, 17, 32 | findcard2s 9135 | . . 3 ⊢ (𝐼 ∈ Fin → (𝑊 ∈ LNoeM → (𝑊 ↑s 𝐼) ∈ LNoeM)) |
| 34 | 33 | impcom 407 | . 2 ⊢ ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → (𝑊 ↑s 𝐼) ∈ LNoeM) |
| 35 | 1, 34 | eqeltrid 2833 | 1 ⊢ ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ∩ cin 3916 ∅c0 4299 {csn 4592 (class class class)co 7390 Fincfn 8921 ↑s cpws 17416 LModclmod 20773 LNoeMclnm 43071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-pws 17419 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-ghm 19152 df-cntz 19256 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lmhm 20936 df-lmim 20937 df-lmic 20938 df-lfig 43064 df-lnm 43072 |
| This theorem is referenced by: lnrfrlm 43114 |
| Copyright terms: Public domain | W3C validator |