Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwslnm Structured version   Visualization version   GIF version

Theorem pwslnm 43201
Description: Finite powers of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
pwslnm.y 𝑌 = (𝑊s 𝐼)
Assertion
Ref Expression
pwslnm ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM)

Proof of Theorem pwslnm
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwslnm.y . 2 𝑌 = (𝑊s 𝐼)
2 oveq2 7363 . . . . . 6 (𝑎 = ∅ → (𝑊s 𝑎) = (𝑊s ∅))
32eleq1d 2818 . . . . 5 (𝑎 = ∅ → ((𝑊s 𝑎) ∈ LNoeM ↔ (𝑊s ∅) ∈ LNoeM))
43imbi2d 340 . . . 4 (𝑎 = ∅ → ((𝑊 ∈ LNoeM → (𝑊s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊s ∅) ∈ LNoeM)))
5 oveq2 7363 . . . . . 6 (𝑎 = 𝑏 → (𝑊s 𝑎) = (𝑊s 𝑏))
65eleq1d 2818 . . . . 5 (𝑎 = 𝑏 → ((𝑊s 𝑎) ∈ LNoeM ↔ (𝑊s 𝑏) ∈ LNoeM))
76imbi2d 340 . . . 4 (𝑎 = 𝑏 → ((𝑊 ∈ LNoeM → (𝑊s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊s 𝑏) ∈ LNoeM)))
8 oveq2 7363 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑊s 𝑎) = (𝑊s (𝑏 ∪ {𝑐})))
98eleq1d 2818 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑊s 𝑎) ∈ LNoeM ↔ (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM))
109imbi2d 340 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑊 ∈ LNoeM → (𝑊s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM)))
11 oveq2 7363 . . . . . 6 (𝑎 = 𝐼 → (𝑊s 𝑎) = (𝑊s 𝐼))
1211eleq1d 2818 . . . . 5 (𝑎 = 𝐼 → ((𝑊s 𝑎) ∈ LNoeM ↔ (𝑊s 𝐼) ∈ LNoeM))
1312imbi2d 340 . . . 4 (𝑎 = 𝐼 → ((𝑊 ∈ LNoeM → (𝑊s 𝑎) ∈ LNoeM) ↔ (𝑊 ∈ LNoeM → (𝑊s 𝐼) ∈ LNoeM)))
14 lnmlmod 43186 . . . . 5 (𝑊 ∈ LNoeM → 𝑊 ∈ LMod)
15 eqid 2733 . . . . . 6 (𝑊s ∅) = (𝑊s ∅)
1615pwslnmlem0 43198 . . . . 5 (𝑊 ∈ LMod → (𝑊s ∅) ∈ LNoeM)
1714, 16syl 17 . . . 4 (𝑊 ∈ LNoeM → (𝑊s ∅) ∈ LNoeM)
18 vex 3442 . . . . . . 7 𝑏 ∈ V
19 vsnex 5376 . . . . . . 7 {𝑐} ∈ V
20 eqid 2733 . . . . . . 7 (𝑊s 𝑏) = (𝑊s 𝑏)
21 eqid 2733 . . . . . . 7 (𝑊s {𝑐}) = (𝑊s {𝑐})
22 eqid 2733 . . . . . . 7 (𝑊s (𝑏 ∪ {𝑐})) = (𝑊s (𝑏 ∪ {𝑐}))
2314ad2antrl 728 . . . . . . 7 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → 𝑊 ∈ LMod)
24 disjsn 4665 . . . . . . . . 9 ((𝑏 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐𝑏)
2524biimpri 228 . . . . . . . 8 𝑐𝑏 → (𝑏 ∩ {𝑐}) = ∅)
2625ad2antlr 727 . . . . . . 7 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → (𝑏 ∩ {𝑐}) = ∅)
27 simprr 772 . . . . . . 7 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → (𝑊s 𝑏) ∈ LNoeM)
2821pwslnmlem1 43199 . . . . . . . 8 (𝑊 ∈ LNoeM → (𝑊s {𝑐}) ∈ LNoeM)
2928ad2antrl 728 . . . . . . 7 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → (𝑊s {𝑐}) ∈ LNoeM)
3018, 19, 20, 21, 22, 23, 26, 27, 29pwslnmlem2 43200 . . . . . 6 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ (𝑊 ∈ LNoeM ∧ (𝑊s 𝑏) ∈ LNoeM)) → (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM)
3130exp32 420 . . . . 5 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → (𝑊 ∈ LNoeM → ((𝑊s 𝑏) ∈ LNoeM → (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM)))
3231a2d 29 . . . 4 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → ((𝑊 ∈ LNoeM → (𝑊s 𝑏) ∈ LNoeM) → (𝑊 ∈ LNoeM → (𝑊s (𝑏 ∪ {𝑐})) ∈ LNoeM)))
334, 7, 10, 13, 17, 32findcard2s 9085 . . 3 (𝐼 ∈ Fin → (𝑊 ∈ LNoeM → (𝑊s 𝐼) ∈ LNoeM))
3433impcom 407 . 2 ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → (𝑊s 𝐼) ∈ LNoeM)
351, 34eqeltrid 2837 1 ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  cun 3897  cin 3898  c0 4284  {csn 4577  (class class class)co 7355  Fincfn 8878  s cpws 17360  LModclmod 20803  LNoeMclnm 43182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-fz 13418  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-hom 17195  df-cco 17196  df-0g 17355  df-prds 17361  df-pws 17363  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-subg 19046  df-ghm 19135  df-cntz 19239  df-lsm 19558  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-lmod 20805  df-lss 20875  df-lsp 20915  df-lmhm 20966  df-lmim 20967  df-lmic 20968  df-lfig 43175  df-lnm 43183
This theorem is referenced by:  lnrfrlm  43225
  Copyright terms: Public domain W3C validator