![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islnm | Structured version Visualization version GIF version |
Description: Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
Ref | Expression |
---|---|
islnm.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
Ref | Expression |
---|---|
islnm | ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6888 | . . . 4 ⊢ (𝑤 = 𝑀 → (LSubSp‘𝑤) = (LSubSp‘𝑀)) | |
2 | islnm.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
3 | 1, 2 | eqtr4di 2790 | . . 3 ⊢ (𝑤 = 𝑀 → (LSubSp‘𝑤) = 𝑆) |
4 | oveq1 7412 | . . . 4 ⊢ (𝑤 = 𝑀 → (𝑤 ↾s 𝑖) = (𝑀 ↾s 𝑖)) | |
5 | 4 | eleq1d 2818 | . . 3 ⊢ (𝑤 = 𝑀 → ((𝑤 ↾s 𝑖) ∈ LFinGen ↔ (𝑀 ↾s 𝑖) ∈ LFinGen)) |
6 | 3, 5 | raleqbidv 3342 | . 2 ⊢ (𝑤 = 𝑀 → (∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen ↔ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
7 | df-lnm 41803 | . 2 ⊢ LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen} | |
8 | 6, 7 | elrab2 3685 | 1 ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ‘cfv 6540 (class class class)co 7405 ↾s cress 17169 LModclmod 20463 LSubSpclss 20534 LFinGenclfig 41794 LNoeMclnm 41802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-ov 7408 df-lnm 41803 |
This theorem is referenced by: islnm2 41805 lnmlmod 41806 lnmlssfg 41807 lnmlsslnm 41808 lnmepi 41812 lmhmlnmsplit 41814 |
Copyright terms: Public domain | W3C validator |