![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islnm | Structured version Visualization version GIF version |
Description: Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
Ref | Expression |
---|---|
islnm.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
Ref | Expression |
---|---|
islnm | ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6332 | . . . 4 ⊢ (𝑤 = 𝑀 → (LSubSp‘𝑤) = (LSubSp‘𝑀)) | |
2 | islnm.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
3 | 1, 2 | syl6eqr 2823 | . . 3 ⊢ (𝑤 = 𝑀 → (LSubSp‘𝑤) = 𝑆) |
4 | oveq1 6800 | . . . 4 ⊢ (𝑤 = 𝑀 → (𝑤 ↾s 𝑖) = (𝑀 ↾s 𝑖)) | |
5 | 4 | eleq1d 2835 | . . 3 ⊢ (𝑤 = 𝑀 → ((𝑤 ↾s 𝑖) ∈ LFinGen ↔ (𝑀 ↾s 𝑖) ∈ LFinGen)) |
6 | 3, 5 | raleqbidv 3301 | . 2 ⊢ (𝑤 = 𝑀 → (∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen ↔ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
7 | df-lnm 38172 | . 2 ⊢ LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen} | |
8 | 6, 7 | elrab2 3518 | 1 ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ‘cfv 6031 (class class class)co 6793 ↾s cress 16065 LModclmod 19073 LSubSpclss 19142 LFinGenclfig 38163 LNoeMclnm 38171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-iota 5994 df-fv 6039 df-ov 6796 df-lnm 38172 |
This theorem is referenced by: islnm2 38174 lnmlmod 38175 lnmlssfg 38176 lnmlsslnm 38177 lnmepi 38181 lmhmlnmsplit 38183 |
Copyright terms: Public domain | W3C validator |