Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islnm Structured version   Visualization version   GIF version

Theorem islnm 43101
Description: Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypothesis
Ref Expression
islnm.s 𝑆 = (LSubSp‘𝑀)
Assertion
Ref Expression
islnm (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖𝑆 (𝑀s 𝑖) ∈ LFinGen))
Distinct variable groups:   𝑖,𝑀   𝑆,𝑖

Proof of Theorem islnm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . . 4 (𝑤 = 𝑀 → (LSubSp‘𝑤) = (LSubSp‘𝑀))
2 islnm.s . . . 4 𝑆 = (LSubSp‘𝑀)
31, 2eqtr4di 2788 . . 3 (𝑤 = 𝑀 → (LSubSp‘𝑤) = 𝑆)
4 oveq1 7412 . . . 4 (𝑤 = 𝑀 → (𝑤s 𝑖) = (𝑀s 𝑖))
54eleq1d 2819 . . 3 (𝑤 = 𝑀 → ((𝑤s 𝑖) ∈ LFinGen ↔ (𝑀s 𝑖) ∈ LFinGen))
63, 5raleqbidv 3325 . 2 (𝑤 = 𝑀 → (∀𝑖 ∈ (LSubSp‘𝑤)(𝑤s 𝑖) ∈ LFinGen ↔ ∀𝑖𝑆 (𝑀s 𝑖) ∈ LFinGen))
7 df-lnm 43100 . 2 LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤s 𝑖) ∈ LFinGen}
86, 7elrab2 3674 1 (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖𝑆 (𝑀s 𝑖) ∈ LFinGen))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  cfv 6531  (class class class)co 7405  s cress 17251  LModclmod 20817  LSubSpclss 20888  LFinGenclfig 43091  LNoeMclnm 43099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-lnm 43100
This theorem is referenced by:  islnm2  43102  lnmlmod  43103  lnmlssfg  43104  lnmlsslnm  43105  lnmepi  43109  lmhmlnmsplit  43111
  Copyright terms: Public domain W3C validator