| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islnm | Structured version Visualization version GIF version | ||
| Description: Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| Ref | Expression |
|---|---|
| islnm.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
| Ref | Expression |
|---|---|
| islnm | ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6872 | . . . 4 ⊢ (𝑤 = 𝑀 → (LSubSp‘𝑤) = (LSubSp‘𝑀)) | |
| 2 | islnm.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
| 3 | 1, 2 | eqtr4di 2787 | . . 3 ⊢ (𝑤 = 𝑀 → (LSubSp‘𝑤) = 𝑆) |
| 4 | oveq1 7406 | . . . 4 ⊢ (𝑤 = 𝑀 → (𝑤 ↾s 𝑖) = (𝑀 ↾s 𝑖)) | |
| 5 | 4 | eleq1d 2818 | . . 3 ⊢ (𝑤 = 𝑀 → ((𝑤 ↾s 𝑖) ∈ LFinGen ↔ (𝑀 ↾s 𝑖) ∈ LFinGen)) |
| 6 | 3, 5 | raleqbidv 3323 | . 2 ⊢ (𝑤 = 𝑀 → (∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen ↔ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
| 7 | df-lnm 43025 | . 2 ⊢ LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen} | |
| 8 | 6, 7 | elrab2 3672 | 1 ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ‘cfv 6527 (class class class)co 7399 ↾s cress 17236 LModclmod 20802 LSubSpclss 20873 LFinGenclfig 43016 LNoeMclnm 43024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-iota 6480 df-fv 6535 df-ov 7402 df-lnm 43025 |
| This theorem is referenced by: islnm2 43027 lnmlmod 43028 lnmlssfg 43029 lnmlsslnm 43030 lnmepi 43034 lmhmlnmsplit 43036 |
| Copyright terms: Public domain | W3C validator |