| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islnm | Structured version Visualization version GIF version | ||
| Description: Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| Ref | Expression |
|---|---|
| islnm.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
| Ref | Expression |
|---|---|
| islnm | ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . 4 ⊢ (𝑤 = 𝑀 → (LSubSp‘𝑤) = (LSubSp‘𝑀)) | |
| 2 | islnm.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
| 3 | 1, 2 | eqtr4di 2782 | . . 3 ⊢ (𝑤 = 𝑀 → (LSubSp‘𝑤) = 𝑆) |
| 4 | oveq1 7394 | . . . 4 ⊢ (𝑤 = 𝑀 → (𝑤 ↾s 𝑖) = (𝑀 ↾s 𝑖)) | |
| 5 | 4 | eleq1d 2813 | . . 3 ⊢ (𝑤 = 𝑀 → ((𝑤 ↾s 𝑖) ∈ LFinGen ↔ (𝑀 ↾s 𝑖) ∈ LFinGen)) |
| 6 | 3, 5 | raleqbidv 3319 | . 2 ⊢ (𝑤 = 𝑀 → (∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen ↔ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
| 7 | df-lnm 43065 | . 2 ⊢ LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen} | |
| 8 | 6, 7 | elrab2 3662 | 1 ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 ↾s cress 17200 LModclmod 20766 LSubSpclss 20837 LFinGenclfig 43056 LNoeMclnm 43064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-lnm 43065 |
| This theorem is referenced by: islnm2 43067 lnmlmod 43068 lnmlssfg 43069 lnmlsslnm 43070 lnmepi 43074 lmhmlnmsplit 43076 |
| Copyright terms: Public domain | W3C validator |