| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlssfg | Structured version Visualization version GIF version | ||
| Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| lnmlssfg.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
| lnmlssfg.r | ⊢ 𝑅 = (𝑀 ↾s 𝑈) |
| Ref | Expression |
|---|---|
| lnmlssfg | ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LFinGen) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnmlssfg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
| 2 | 1 | islnm 43068 | . . 3 ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑎 ∈ 𝑆 (𝑀 ↾s 𝑎) ∈ LFinGen)) |
| 3 | 2 | simprbi 496 | . 2 ⊢ (𝑀 ∈ LNoeM → ∀𝑎 ∈ 𝑆 (𝑀 ↾s 𝑎) ∈ LFinGen) |
| 4 | oveq2 7418 | . . . . 5 ⊢ (𝑎 = 𝑈 → (𝑀 ↾s 𝑎) = (𝑀 ↾s 𝑈)) | |
| 5 | lnmlssfg.r | . . . . 5 ⊢ 𝑅 = (𝑀 ↾s 𝑈) | |
| 6 | 4, 5 | eqtr4di 2789 | . . . 4 ⊢ (𝑎 = 𝑈 → (𝑀 ↾s 𝑎) = 𝑅) |
| 7 | 6 | eleq1d 2820 | . . 3 ⊢ (𝑎 = 𝑈 → ((𝑀 ↾s 𝑎) ∈ LFinGen ↔ 𝑅 ∈ LFinGen)) |
| 8 | 7 | rspcv 3602 | . 2 ⊢ (𝑈 ∈ 𝑆 → (∀𝑎 ∈ 𝑆 (𝑀 ↾s 𝑎) ∈ LFinGen → 𝑅 ∈ LFinGen)) |
| 9 | 3, 8 | mpan9 506 | 1 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LFinGen) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ‘cfv 6536 (class class class)co 7410 ↾s cress 17256 LModclmod 20822 LSubSpclss 20893 LFinGenclfig 43058 LNoeMclnm 43066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-lnm 43067 |
| This theorem is referenced by: lnmlsslnm 43072 lnmfg 43073 lnmepi 43076 lmhmlnmsplit 43078 lnrfgtr 43111 |
| Copyright terms: Public domain | W3C validator |