![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlssfg | Structured version Visualization version GIF version |
Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lnmlssfg.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
lnmlssfg.r | ⊢ 𝑅 = (𝑀 ↾s 𝑈) |
Ref | Expression |
---|---|
lnmlssfg | ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LFinGen) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnmlssfg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
2 | 1 | islnm 43034 | . . 3 ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑎 ∈ 𝑆 (𝑀 ↾s 𝑎) ∈ LFinGen)) |
3 | 2 | simprbi 496 | . 2 ⊢ (𝑀 ∈ LNoeM → ∀𝑎 ∈ 𝑆 (𝑀 ↾s 𝑎) ∈ LFinGen) |
4 | oveq2 7456 | . . . . 5 ⊢ (𝑎 = 𝑈 → (𝑀 ↾s 𝑎) = (𝑀 ↾s 𝑈)) | |
5 | lnmlssfg.r | . . . . 5 ⊢ 𝑅 = (𝑀 ↾s 𝑈) | |
6 | 4, 5 | eqtr4di 2798 | . . . 4 ⊢ (𝑎 = 𝑈 → (𝑀 ↾s 𝑎) = 𝑅) |
7 | 6 | eleq1d 2829 | . . 3 ⊢ (𝑎 = 𝑈 → ((𝑀 ↾s 𝑎) ∈ LFinGen ↔ 𝑅 ∈ LFinGen)) |
8 | 7 | rspcv 3631 | . 2 ⊢ (𝑈 ∈ 𝑆 → (∀𝑎 ∈ 𝑆 (𝑀 ↾s 𝑎) ∈ LFinGen → 𝑅 ∈ LFinGen)) |
9 | 3, 8 | mpan9 506 | 1 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LFinGen) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 ↾s cress 17287 LModclmod 20880 LSubSpclss 20952 LFinGenclfig 43024 LNoeMclnm 43032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-lnm 43033 |
This theorem is referenced by: lnmlsslnm 43038 lnmfg 43039 lnmepi 43042 lmhmlnmsplit 43044 lnrfgtr 43077 |
Copyright terms: Public domain | W3C validator |