Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlssfg Structured version   Visualization version   GIF version

Theorem lnmlssfg 40914
Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lnmlssfg.s 𝑆 = (LSubSp‘𝑀)
lnmlssfg.r 𝑅 = (𝑀s 𝑈)
Assertion
Ref Expression
lnmlssfg ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LFinGen)

Proof of Theorem lnmlssfg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lnmlssfg.s . . . 4 𝑆 = (LSubSp‘𝑀)
21islnm 40911 . . 3 (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑎𝑆 (𝑀s 𝑎) ∈ LFinGen))
32simprbi 497 . 2 (𝑀 ∈ LNoeM → ∀𝑎𝑆 (𝑀s 𝑎) ∈ LFinGen)
4 oveq2 7280 . . . . 5 (𝑎 = 𝑈 → (𝑀s 𝑎) = (𝑀s 𝑈))
5 lnmlssfg.r . . . . 5 𝑅 = (𝑀s 𝑈)
64, 5eqtr4di 2798 . . . 4 (𝑎 = 𝑈 → (𝑀s 𝑎) = 𝑅)
76eleq1d 2825 . . 3 (𝑎 = 𝑈 → ((𝑀s 𝑎) ∈ LFinGen ↔ 𝑅 ∈ LFinGen))
87rspcv 3556 . 2 (𝑈𝑆 → (∀𝑎𝑆 (𝑀s 𝑎) ∈ LFinGen → 𝑅 ∈ LFinGen))
93, 8mpan9 507 1 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  cfv 6432  (class class class)co 7272  s cress 16952  LModclmod 20134  LSubSpclss 20204  LFinGenclfig 40901  LNoeMclnm 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-iota 6390  df-fv 6440  df-ov 7275  df-lnm 40910
This theorem is referenced by:  lnmlsslnm  40915  lnmfg  40916  lnmepi  40919  lmhmlnmsplit  40921  lnrfgtr  40954
  Copyright terms: Public domain W3C validator