Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlssfg Structured version   Visualization version   GIF version

Theorem lnmlssfg 43076
Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lnmlssfg.s 𝑆 = (LSubSp‘𝑀)
lnmlssfg.r 𝑅 = (𝑀s 𝑈)
Assertion
Ref Expression
lnmlssfg ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LFinGen)

Proof of Theorem lnmlssfg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lnmlssfg.s . . . 4 𝑆 = (LSubSp‘𝑀)
21islnm 43073 . . 3 (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑎𝑆 (𝑀s 𝑎) ∈ LFinGen))
32simprbi 496 . 2 (𝑀 ∈ LNoeM → ∀𝑎𝑆 (𝑀s 𝑎) ∈ LFinGen)
4 oveq2 7398 . . . . 5 (𝑎 = 𝑈 → (𝑀s 𝑎) = (𝑀s 𝑈))
5 lnmlssfg.r . . . . 5 𝑅 = (𝑀s 𝑈)
64, 5eqtr4di 2783 . . . 4 (𝑎 = 𝑈 → (𝑀s 𝑎) = 𝑅)
76eleq1d 2814 . . 3 (𝑎 = 𝑈 → ((𝑀s 𝑎) ∈ LFinGen ↔ 𝑅 ∈ LFinGen))
87rspcv 3587 . 2 (𝑈𝑆 → (∀𝑎𝑆 (𝑀s 𝑎) ∈ LFinGen → 𝑅 ∈ LFinGen))
93, 8mpan9 506 1 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cfv 6514  (class class class)co 7390  s cress 17207  LModclmod 20773  LSubSpclss 20844  LFinGenclfig 43063  LNoeMclnm 43071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-lnm 43072
This theorem is referenced by:  lnmlsslnm  43077  lnmfg  43078  lnmepi  43081  lmhmlnmsplit  43083  lnrfgtr  43116
  Copyright terms: Public domain W3C validator