Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlssfg Structured version   Visualization version   GIF version

Theorem lnmlssfg 43037
Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lnmlssfg.s 𝑆 = (LSubSp‘𝑀)
lnmlssfg.r 𝑅 = (𝑀s 𝑈)
Assertion
Ref Expression
lnmlssfg ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LFinGen)

Proof of Theorem lnmlssfg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lnmlssfg.s . . . 4 𝑆 = (LSubSp‘𝑀)
21islnm 43034 . . 3 (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑎𝑆 (𝑀s 𝑎) ∈ LFinGen))
32simprbi 496 . 2 (𝑀 ∈ LNoeM → ∀𝑎𝑆 (𝑀s 𝑎) ∈ LFinGen)
4 oveq2 7456 . . . . 5 (𝑎 = 𝑈 → (𝑀s 𝑎) = (𝑀s 𝑈))
5 lnmlssfg.r . . . . 5 𝑅 = (𝑀s 𝑈)
64, 5eqtr4di 2798 . . . 4 (𝑎 = 𝑈 → (𝑀s 𝑎) = 𝑅)
76eleq1d 2829 . . 3 (𝑎 = 𝑈 → ((𝑀s 𝑎) ∈ LFinGen ↔ 𝑅 ∈ LFinGen))
87rspcv 3631 . 2 (𝑈𝑆 → (∀𝑎𝑆 (𝑀s 𝑎) ∈ LFinGen → 𝑅 ∈ LFinGen))
93, 8mpan9 506 1 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cfv 6573  (class class class)co 7448  s cress 17287  LModclmod 20880  LSubSpclss 20952  LFinGenclfig 43024  LNoeMclnm 43032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-lnm 43033
This theorem is referenced by:  lnmlsslnm  43038  lnmfg  43039  lnmepi  43042  lmhmlnmsplit  43044  lnrfgtr  43077
  Copyright terms: Public domain W3C validator