Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlssfg Structured version   Visualization version   GIF version

Theorem lnmlssfg 42535
Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lnmlssfg.s 𝑆 = (LSubSp‘𝑀)
lnmlssfg.r 𝑅 = (𝑀s 𝑈)
Assertion
Ref Expression
lnmlssfg ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LFinGen)

Proof of Theorem lnmlssfg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lnmlssfg.s . . . 4 𝑆 = (LSubSp‘𝑀)
21islnm 42532 . . 3 (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑎𝑆 (𝑀s 𝑎) ∈ LFinGen))
32simprbi 495 . 2 (𝑀 ∈ LNoeM → ∀𝑎𝑆 (𝑀s 𝑎) ∈ LFinGen)
4 oveq2 7434 . . . . 5 (𝑎 = 𝑈 → (𝑀s 𝑎) = (𝑀s 𝑈))
5 lnmlssfg.r . . . . 5 𝑅 = (𝑀s 𝑈)
64, 5eqtr4di 2786 . . . 4 (𝑎 = 𝑈 → (𝑀s 𝑎) = 𝑅)
76eleq1d 2814 . . 3 (𝑎 = 𝑈 → ((𝑀s 𝑎) ∈ LFinGen ↔ 𝑅 ∈ LFinGen))
87rspcv 3607 . 2 (𝑈𝑆 → (∀𝑎𝑆 (𝑀s 𝑎) ∈ LFinGen → 𝑅 ∈ LFinGen))
93, 8mpan9 505 1 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3058  cfv 6553  (class class class)co 7426  s cress 17216  LModclmod 20750  LSubSpclss 20822  LFinGenclfig 42522  LNoeMclnm 42530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-ov 7429  df-lnm 42531
This theorem is referenced by:  lnmlsslnm  42536  lnmfg  42537  lnmepi  42540  lmhmlnmsplit  42542  lnrfgtr  42575
  Copyright terms: Public domain W3C validator