![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlssfg | Structured version Visualization version GIF version |
Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lnmlssfg.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
lnmlssfg.r | ⊢ 𝑅 = (𝑀 ↾s 𝑈) |
Ref | Expression |
---|---|
lnmlssfg | ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LFinGen) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnmlssfg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
2 | 1 | islnm 39070 | . . 3 ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑎 ∈ 𝑆 (𝑀 ↾s 𝑎) ∈ LFinGen)) |
3 | 2 | simprbi 489 | . 2 ⊢ (𝑀 ∈ LNoeM → ∀𝑎 ∈ 𝑆 (𝑀 ↾s 𝑎) ∈ LFinGen) |
4 | oveq2 6984 | . . . . 5 ⊢ (𝑎 = 𝑈 → (𝑀 ↾s 𝑎) = (𝑀 ↾s 𝑈)) | |
5 | lnmlssfg.r | . . . . 5 ⊢ 𝑅 = (𝑀 ↾s 𝑈) | |
6 | 4, 5 | syl6eqr 2833 | . . . 4 ⊢ (𝑎 = 𝑈 → (𝑀 ↾s 𝑎) = 𝑅) |
7 | 6 | eleq1d 2851 | . . 3 ⊢ (𝑎 = 𝑈 → ((𝑀 ↾s 𝑎) ∈ LFinGen ↔ 𝑅 ∈ LFinGen)) |
8 | 7 | rspcv 3532 | . 2 ⊢ (𝑈 ∈ 𝑆 → (∀𝑎 ∈ 𝑆 (𝑀 ↾s 𝑎) ∈ LFinGen → 𝑅 ∈ LFinGen)) |
9 | 3, 8 | mpan9 499 | 1 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LFinGen) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∀wral 3089 ‘cfv 6188 (class class class)co 6976 ↾s cress 16340 LModclmod 19356 LSubSpclss 19425 LFinGenclfig 39060 LNoeMclnm 39068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2751 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-iota 6152 df-fv 6196 df-ov 6979 df-lnm 39069 |
This theorem is referenced by: lnmlsslnm 39074 lnmfg 39075 lnmepi 39078 lmhmlnmsplit 39080 lnrfgtr 39113 |
Copyright terms: Public domain | W3C validator |