![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlssfg | Structured version Visualization version GIF version |
Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lnmlssfg.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
lnmlssfg.r | ⊢ 𝑅 = (𝑀 ↾s 𝑈) |
Ref | Expression |
---|---|
lnmlssfg | ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LFinGen) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnmlssfg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
2 | 1 | islnm 42394 | . . 3 ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑎 ∈ 𝑆 (𝑀 ↾s 𝑎) ∈ LFinGen)) |
3 | 2 | simprbi 496 | . 2 ⊢ (𝑀 ∈ LNoeM → ∀𝑎 ∈ 𝑆 (𝑀 ↾s 𝑎) ∈ LFinGen) |
4 | oveq2 7413 | . . . . 5 ⊢ (𝑎 = 𝑈 → (𝑀 ↾s 𝑎) = (𝑀 ↾s 𝑈)) | |
5 | lnmlssfg.r | . . . . 5 ⊢ 𝑅 = (𝑀 ↾s 𝑈) | |
6 | 4, 5 | eqtr4di 2784 | . . . 4 ⊢ (𝑎 = 𝑈 → (𝑀 ↾s 𝑎) = 𝑅) |
7 | 6 | eleq1d 2812 | . . 3 ⊢ (𝑎 = 𝑈 → ((𝑀 ↾s 𝑎) ∈ LFinGen ↔ 𝑅 ∈ LFinGen)) |
8 | 7 | rspcv 3602 | . 2 ⊢ (𝑈 ∈ 𝑆 → (∀𝑎 ∈ 𝑆 (𝑀 ↾s 𝑎) ∈ LFinGen → 𝑅 ∈ LFinGen)) |
9 | 3, 8 | mpan9 506 | 1 ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LFinGen) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ‘cfv 6537 (class class class)co 7405 ↾s cress 17182 LModclmod 20706 LSubSpclss 20778 LFinGenclfig 42384 LNoeMclnm 42392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6489 df-fv 6545 df-ov 7408 df-lnm 42393 |
This theorem is referenced by: lnmlsslnm 42398 lnmfg 42399 lnmepi 42402 lmhmlnmsplit 42404 lnrfgtr 42437 |
Copyright terms: Public domain | W3C validator |