MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltasr Structured version   Visualization version   GIF version

Theorem ltasr 11137
Description: Ordering property of addition. (Contributed by NM, 10-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltasr (𝐶R → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))

Proof of Theorem ltasr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmaddsr 11122 . 2 dom +R = (R × R)
2 ltrelsr 11105 . 2 <R ⊆ (R × R)
3 0nsr 11116 . 2 ¬ ∅ ∈ R
4 df-nr 11093 . . . 4 R = ((P × P) / ~R )
5 oveq1 7437 . . . . . 6 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ))
6 oveq1 7437 . . . . . 6 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))
75, 6breq12d 5160 . . . . 5 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → (([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )))
87bibi2d 342 . . . 4 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R )) ↔ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))))
9 breq1 5150 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
10 oveq2 7438 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) = (𝐶 +R 𝐴))
1110breq1d 5157 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )))
129, 11bibi12d 345 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))))
13 breq2 5151 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
14 oveq2 7438 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐶 +R 𝐵))
1514breq2d 5159 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
1613, 15bibi12d 345 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )) ↔ (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))))
17 addclpr 11055 . . . . . . 7 ((𝑣P𝑢P) → (𝑣 +P 𝑢) ∈ P)
18173ad2ant1 1132 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑣 +P 𝑢) ∈ P)
19 ltapr 11082 . . . . . . 7 ((𝑣 +P 𝑢) ∈ P → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
20 ltsrpr 11114 . . . . . . 7 ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧))
21 ltsrpr 11114 . . . . . . . 8 ([⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ↔ ((𝑣 +P 𝑥) +P (𝑢 +P 𝑤))<P ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)))
22 vex 3481 . . . . . . . . . 10 𝑣 ∈ V
23 vex 3481 . . . . . . . . . 10 𝑥 ∈ V
24 vex 3481 . . . . . . . . . 10 𝑢 ∈ V
25 addcompr 11058 . . . . . . . . . 10 (𝑦 +P 𝑧) = (𝑧 +P 𝑦)
26 addasspr 11059 . . . . . . . . . 10 ((𝑦 +P 𝑧) +P 𝑓) = (𝑦 +P (𝑧 +P 𝑓))
27 vex 3481 . . . . . . . . . 10 𝑤 ∈ V
2822, 23, 24, 25, 26, 27caov4 7663 . . . . . . . . 9 ((𝑣 +P 𝑥) +P (𝑢 +P 𝑤)) = ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))
29 addcompr 11058 . . . . . . . . . 10 ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) = ((𝑣 +P 𝑧) +P (𝑢 +P 𝑦))
30 vex 3481 . . . . . . . . . . 11 𝑧 ∈ V
31 addcompr 11058 . . . . . . . . . . 11 (𝑥 +P 𝑤) = (𝑤 +P 𝑥)
32 addasspr 11059 . . . . . . . . . . 11 ((𝑥 +P 𝑤) +P 𝑓) = (𝑥 +P (𝑤 +P 𝑓))
33 vex 3481 . . . . . . . . . . 11 𝑦 ∈ V
3422, 30, 24, 31, 32, 33caov42 7665 . . . . . . . . . 10 ((𝑣 +P 𝑧) +P (𝑢 +P 𝑦)) = ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))
3529, 34eqtri 2762 . . . . . . . . 9 ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) = ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))
3628, 35breq12i 5156 . . . . . . . 8 (((𝑣 +P 𝑥) +P (𝑢 +P 𝑤))<P ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧)))
3721, 36bitri 275 . . . . . . 7 ([⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧)))
3819, 20, 373bitr4g 314 . . . . . 6 ((𝑣 +P 𝑢) ∈ P → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ))
3918, 38syl 17 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ))
40 addsrpr 11112 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R )
41403adant3 1131 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R )
42 addsrpr 11112 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R )
43423adant2 1130 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R )
4441, 43breq12d 5160 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ↔ [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ))
4539, 44bitr4d 282 . . . 4 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R )))
464, 8, 12, 16, 453ecoptocl 8847 . . 3 ((𝐶R𝐴R𝐵R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
47463coml 1126 . 2 ((𝐴R𝐵R𝐶R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
481, 2, 3, 47ndmovord 7622 1 (𝐶R → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  cop 4636   class class class wbr 5147  (class class class)co 7430  [cec 8741  Pcnp 10896   +P cpp 10898  <P cltp 10900   ~R cer 10901  Rcnr 10902   +R cplr 10906   <R cltr 10908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-omul 8509  df-er 8743  df-ec 8745  df-qs 8749  df-ni 10909  df-pli 10910  df-mi 10911  df-lti 10912  df-plpq 10945  df-mpq 10946  df-ltpq 10947  df-enq 10948  df-nq 10949  df-erq 10950  df-plq 10951  df-mq 10952  df-1nq 10953  df-rq 10954  df-ltnq 10955  df-np 11018  df-plp 11020  df-ltp 11022  df-enr 11092  df-nr 11093  df-plr 11094  df-ltr 11096
This theorem is referenced by:  addgt0sr  11141  sqgt0sr  11143  mappsrpr  11145  ltpsrpr  11146  map2psrpr  11147  supsrlem  11148  axpre-ltadd  11204
  Copyright terms: Public domain W3C validator