MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltasr Structured version   Visualization version   GIF version

Theorem ltasr 10787
Description: Ordering property of addition. (Contributed by NM, 10-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltasr (𝐶R → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))

Proof of Theorem ltasr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmaddsr 10772 . 2 dom +R = (R × R)
2 ltrelsr 10755 . 2 <R ⊆ (R × R)
3 0nsr 10766 . 2 ¬ ∅ ∈ R
4 df-nr 10743 . . . 4 R = ((P × P) / ~R )
5 oveq1 7262 . . . . . 6 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ))
6 oveq1 7262 . . . . . 6 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))
75, 6breq12d 5083 . . . . 5 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → (([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )))
87bibi2d 342 . . . 4 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R )) ↔ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))))
9 breq1 5073 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
10 oveq2 7263 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) = (𝐶 +R 𝐴))
1110breq1d 5080 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )))
129, 11bibi12d 345 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))))
13 breq2 5074 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
14 oveq2 7263 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐶 +R 𝐵))
1514breq2d 5082 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
1613, 15bibi12d 345 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )) ↔ (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))))
17 addclpr 10705 . . . . . . 7 ((𝑣P𝑢P) → (𝑣 +P 𝑢) ∈ P)
18173ad2ant1 1131 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑣 +P 𝑢) ∈ P)
19 ltapr 10732 . . . . . . 7 ((𝑣 +P 𝑢) ∈ P → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
20 ltsrpr 10764 . . . . . . 7 ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧))
21 ltsrpr 10764 . . . . . . . 8 ([⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ↔ ((𝑣 +P 𝑥) +P (𝑢 +P 𝑤))<P ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)))
22 vex 3426 . . . . . . . . . 10 𝑣 ∈ V
23 vex 3426 . . . . . . . . . 10 𝑥 ∈ V
24 vex 3426 . . . . . . . . . 10 𝑢 ∈ V
25 addcompr 10708 . . . . . . . . . 10 (𝑦 +P 𝑧) = (𝑧 +P 𝑦)
26 addasspr 10709 . . . . . . . . . 10 ((𝑦 +P 𝑧) +P 𝑓) = (𝑦 +P (𝑧 +P 𝑓))
27 vex 3426 . . . . . . . . . 10 𝑤 ∈ V
2822, 23, 24, 25, 26, 27caov4 7481 . . . . . . . . 9 ((𝑣 +P 𝑥) +P (𝑢 +P 𝑤)) = ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))
29 addcompr 10708 . . . . . . . . . 10 ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) = ((𝑣 +P 𝑧) +P (𝑢 +P 𝑦))
30 vex 3426 . . . . . . . . . . 11 𝑧 ∈ V
31 addcompr 10708 . . . . . . . . . . 11 (𝑥 +P 𝑤) = (𝑤 +P 𝑥)
32 addasspr 10709 . . . . . . . . . . 11 ((𝑥 +P 𝑤) +P 𝑓) = (𝑥 +P (𝑤 +P 𝑓))
33 vex 3426 . . . . . . . . . . 11 𝑦 ∈ V
3422, 30, 24, 31, 32, 33caov42 7483 . . . . . . . . . 10 ((𝑣 +P 𝑧) +P (𝑢 +P 𝑦)) = ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))
3529, 34eqtri 2766 . . . . . . . . 9 ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) = ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))
3628, 35breq12i 5079 . . . . . . . 8 (((𝑣 +P 𝑥) +P (𝑢 +P 𝑤))<P ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧)))
3721, 36bitri 274 . . . . . . 7 ([⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧)))
3819, 20, 373bitr4g 313 . . . . . 6 ((𝑣 +P 𝑢) ∈ P → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ))
3918, 38syl 17 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ))
40 addsrpr 10762 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R )
41403adant3 1130 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R )
42 addsrpr 10762 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R )
43423adant2 1129 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R )
4441, 43breq12d 5083 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ↔ [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ))
4539, 44bitr4d 281 . . . 4 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R )))
464, 8, 12, 16, 453ecoptocl 8556 . . 3 ((𝐶R𝐴R𝐵R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
47463coml 1125 . 2 ((𝐴R𝐵R𝐶R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
481, 2, 3, 47ndmovord 7440 1 (𝐶R → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070  (class class class)co 7255  [cec 8454  Pcnp 10546   +P cpp 10548  <P cltp 10550   ~R cer 10551  Rcnr 10552   +R cplr 10556   <R cltr 10558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603  df-rq 10604  df-ltnq 10605  df-np 10668  df-plp 10670  df-ltp 10672  df-enr 10742  df-nr 10743  df-plr 10744  df-ltr 10746
This theorem is referenced by:  addgt0sr  10791  sqgt0sr  10793  mappsrpr  10795  ltpsrpr  10796  map2psrpr  10797  supsrlem  10798  axpre-ltadd  10854
  Copyright terms: Public domain W3C validator