MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcmpblnr Structured version   Visualization version   GIF version

Theorem addcmpblnr 11059
Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcmpblnr ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩))

Proof of Theorem addcmpblnr
StepHypRef Expression
1 oveq12 7412 . 2 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅)))
2 addclpr 11008 . . . . . . . 8 ((𝐴P𝐹P) → (𝐴 +P 𝐹) ∈ P)
3 addclpr 11008 . . . . . . . 8 ((𝐵P𝐺P) → (𝐵 +P 𝐺) ∈ P)
42, 3anim12i 614 . . . . . . 7 (((𝐴P𝐹P) ∧ (𝐵P𝐺P)) → ((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P))
54an4s 659 . . . . . 6 (((𝐴P𝐵P) ∧ (𝐹P𝐺P)) → ((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P))
6 addclpr 11008 . . . . . . . 8 ((𝐶P𝑅P) → (𝐶 +P 𝑅) ∈ P)
7 addclpr 11008 . . . . . . . 8 ((𝐷P𝑆P) → (𝐷 +P 𝑆) ∈ P)
86, 7anim12i 614 . . . . . . 7 (((𝐶P𝑅P) ∧ (𝐷P𝑆P)) → ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P))
98an4s 659 . . . . . 6 (((𝐶P𝐷P) ∧ (𝑅P𝑆P)) → ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P))
105, 9anim12i 614 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐹P𝐺P)) ∧ ((𝐶P𝐷P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P) ∧ ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P)))
1110an4s 659 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P) ∧ ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P)))
12 enrbreq 11055 . . . 4 ((((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P) ∧ ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P)) → (⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩ ↔ ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅))))
1311, 12syl 17 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩ ↔ ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅))))
14 addcompr 11011 . . . . . . . 8 (𝐹 +P 𝐷) = (𝐷 +P 𝐹)
1514oveq1i 7413 . . . . . . 7 ((𝐹 +P 𝐷) +P 𝑆) = ((𝐷 +P 𝐹) +P 𝑆)
16 addasspr 11012 . . . . . . 7 ((𝐹 +P 𝐷) +P 𝑆) = (𝐹 +P (𝐷 +P 𝑆))
17 addasspr 11012 . . . . . . 7 ((𝐷 +P 𝐹) +P 𝑆) = (𝐷 +P (𝐹 +P 𝑆))
1815, 16, 173eqtr3i 2769 . . . . . 6 (𝐹 +P (𝐷 +P 𝑆)) = (𝐷 +P (𝐹 +P 𝑆))
1918oveq2i 7414 . . . . 5 (𝐴 +P (𝐹 +P (𝐷 +P 𝑆))) = (𝐴 +P (𝐷 +P (𝐹 +P 𝑆)))
20 addasspr 11012 . . . . 5 ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = (𝐴 +P (𝐹 +P (𝐷 +P 𝑆)))
21 addasspr 11012 . . . . 5 ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = (𝐴 +P (𝐷 +P (𝐹 +P 𝑆)))
2219, 20, 213eqtr4i 2771 . . . 4 ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆))
23 addcompr 11011 . . . . . . . 8 (𝐺 +P 𝐶) = (𝐶 +P 𝐺)
2423oveq1i 7413 . . . . . . 7 ((𝐺 +P 𝐶) +P 𝑅) = ((𝐶 +P 𝐺) +P 𝑅)
25 addasspr 11012 . . . . . . 7 ((𝐺 +P 𝐶) +P 𝑅) = (𝐺 +P (𝐶 +P 𝑅))
26 addasspr 11012 . . . . . . 7 ((𝐶 +P 𝐺) +P 𝑅) = (𝐶 +P (𝐺 +P 𝑅))
2724, 25, 263eqtr3i 2769 . . . . . 6 (𝐺 +P (𝐶 +P 𝑅)) = (𝐶 +P (𝐺 +P 𝑅))
2827oveq2i 7414 . . . . 5 (𝐵 +P (𝐺 +P (𝐶 +P 𝑅))) = (𝐵 +P (𝐶 +P (𝐺 +P 𝑅)))
29 addasspr 11012 . . . . 5 ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅)) = (𝐵 +P (𝐺 +P (𝐶 +P 𝑅)))
30 addasspr 11012 . . . . 5 ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅)) = (𝐵 +P (𝐶 +P (𝐺 +P 𝑅)))
3128, 29, 303eqtr4i 2771 . . . 4 ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅))
3222, 31eqeq12i 2751 . . 3 (((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅)) ↔ ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅)))
3313, 32bitrdi 287 . 2 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩ ↔ ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅))))
341, 33imbitrrid 245 1 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  cop 4632   class class class wbr 5146  (class class class)co 7403  Pcnp 10849   +P cpp 10851   ~R cer 10854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-inf2 9631
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-oadd 8464  df-omul 8465  df-er 8698  df-ni 10862  df-pli 10863  df-mi 10864  df-lti 10865  df-plpq 10898  df-mpq 10899  df-ltpq 10900  df-enq 10901  df-nq 10902  df-erq 10903  df-plq 10904  df-mq 10905  df-1nq 10906  df-rq 10907  df-ltnq 10908  df-np 10971  df-plp 10973  df-enr 11045
This theorem is referenced by:  addsrmo  11063
  Copyright terms: Public domain W3C validator