MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcmpblnr Structured version   Visualization version   GIF version

Theorem addcmpblnr 11084
Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcmpblnr ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩))

Proof of Theorem addcmpblnr
StepHypRef Expression
1 oveq12 7423 . 2 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅)))
2 addclpr 11033 . . . . . . . 8 ((𝐴P𝐹P) → (𝐴 +P 𝐹) ∈ P)
3 addclpr 11033 . . . . . . . 8 ((𝐵P𝐺P) → (𝐵 +P 𝐺) ∈ P)
42, 3anim12i 612 . . . . . . 7 (((𝐴P𝐹P) ∧ (𝐵P𝐺P)) → ((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P))
54an4s 659 . . . . . 6 (((𝐴P𝐵P) ∧ (𝐹P𝐺P)) → ((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P))
6 addclpr 11033 . . . . . . . 8 ((𝐶P𝑅P) → (𝐶 +P 𝑅) ∈ P)
7 addclpr 11033 . . . . . . . 8 ((𝐷P𝑆P) → (𝐷 +P 𝑆) ∈ P)
86, 7anim12i 612 . . . . . . 7 (((𝐶P𝑅P) ∧ (𝐷P𝑆P)) → ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P))
98an4s 659 . . . . . 6 (((𝐶P𝐷P) ∧ (𝑅P𝑆P)) → ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P))
105, 9anim12i 612 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐹P𝐺P)) ∧ ((𝐶P𝐷P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P) ∧ ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P)))
1110an4s 659 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P) ∧ ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P)))
12 enrbreq 11080 . . . 4 ((((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P) ∧ ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P)) → (⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩ ↔ ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅))))
1311, 12syl 17 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩ ↔ ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅))))
14 addcompr 11036 . . . . . . . 8 (𝐹 +P 𝐷) = (𝐷 +P 𝐹)
1514oveq1i 7424 . . . . . . 7 ((𝐹 +P 𝐷) +P 𝑆) = ((𝐷 +P 𝐹) +P 𝑆)
16 addasspr 11037 . . . . . . 7 ((𝐹 +P 𝐷) +P 𝑆) = (𝐹 +P (𝐷 +P 𝑆))
17 addasspr 11037 . . . . . . 7 ((𝐷 +P 𝐹) +P 𝑆) = (𝐷 +P (𝐹 +P 𝑆))
1815, 16, 173eqtr3i 2763 . . . . . 6 (𝐹 +P (𝐷 +P 𝑆)) = (𝐷 +P (𝐹 +P 𝑆))
1918oveq2i 7425 . . . . 5 (𝐴 +P (𝐹 +P (𝐷 +P 𝑆))) = (𝐴 +P (𝐷 +P (𝐹 +P 𝑆)))
20 addasspr 11037 . . . . 5 ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = (𝐴 +P (𝐹 +P (𝐷 +P 𝑆)))
21 addasspr 11037 . . . . 5 ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = (𝐴 +P (𝐷 +P (𝐹 +P 𝑆)))
2219, 20, 213eqtr4i 2765 . . . 4 ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆))
23 addcompr 11036 . . . . . . . 8 (𝐺 +P 𝐶) = (𝐶 +P 𝐺)
2423oveq1i 7424 . . . . . . 7 ((𝐺 +P 𝐶) +P 𝑅) = ((𝐶 +P 𝐺) +P 𝑅)
25 addasspr 11037 . . . . . . 7 ((𝐺 +P 𝐶) +P 𝑅) = (𝐺 +P (𝐶 +P 𝑅))
26 addasspr 11037 . . . . . . 7 ((𝐶 +P 𝐺) +P 𝑅) = (𝐶 +P (𝐺 +P 𝑅))
2724, 25, 263eqtr3i 2763 . . . . . 6 (𝐺 +P (𝐶 +P 𝑅)) = (𝐶 +P (𝐺 +P 𝑅))
2827oveq2i 7425 . . . . 5 (𝐵 +P (𝐺 +P (𝐶 +P 𝑅))) = (𝐵 +P (𝐶 +P (𝐺 +P 𝑅)))
29 addasspr 11037 . . . . 5 ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅)) = (𝐵 +P (𝐺 +P (𝐶 +P 𝑅)))
30 addasspr 11037 . . . . 5 ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅)) = (𝐵 +P (𝐶 +P (𝐺 +P 𝑅)))
3128, 29, 303eqtr4i 2765 . . . 4 ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅))
3222, 31eqeq12i 2745 . . 3 (((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅)) ↔ ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅)))
3313, 32bitrdi 287 . 2 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩ ↔ ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅))))
341, 33imbitrrid 245 1 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  cop 4630   class class class wbr 5142  (class class class)co 7414  Pcnp 10874   +P cpp 10876   ~R cer 10879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8718  df-ni 10887  df-pli 10888  df-mi 10889  df-lti 10890  df-plpq 10923  df-mpq 10924  df-ltpq 10925  df-enq 10926  df-nq 10927  df-erq 10928  df-plq 10929  df-mq 10930  df-1nq 10931  df-rq 10932  df-ltnq 10933  df-np 10996  df-plp 10998  df-enr 11070
This theorem is referenced by:  addsrmo  11088
  Copyright terms: Public domain W3C validator