MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcmpblnr Structured version   Visualization version   GIF version

Theorem addcmpblnr 11107
Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcmpblnr ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩))

Proof of Theorem addcmpblnr
StepHypRef Expression
1 oveq12 7440 . 2 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅)))
2 addclpr 11056 . . . . . . . 8 ((𝐴P𝐹P) → (𝐴 +P 𝐹) ∈ P)
3 addclpr 11056 . . . . . . . 8 ((𝐵P𝐺P) → (𝐵 +P 𝐺) ∈ P)
42, 3anim12i 613 . . . . . . 7 (((𝐴P𝐹P) ∧ (𝐵P𝐺P)) → ((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P))
54an4s 660 . . . . . 6 (((𝐴P𝐵P) ∧ (𝐹P𝐺P)) → ((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P))
6 addclpr 11056 . . . . . . . 8 ((𝐶P𝑅P) → (𝐶 +P 𝑅) ∈ P)
7 addclpr 11056 . . . . . . . 8 ((𝐷P𝑆P) → (𝐷 +P 𝑆) ∈ P)
86, 7anim12i 613 . . . . . . 7 (((𝐶P𝑅P) ∧ (𝐷P𝑆P)) → ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P))
98an4s 660 . . . . . 6 (((𝐶P𝐷P) ∧ (𝑅P𝑆P)) → ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P))
105, 9anim12i 613 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐹P𝐺P)) ∧ ((𝐶P𝐷P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P) ∧ ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P)))
1110an4s 660 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P) ∧ ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P)))
12 enrbreq 11103 . . . 4 ((((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P) ∧ ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P)) → (⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩ ↔ ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅))))
1311, 12syl 17 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩ ↔ ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅))))
14 addcompr 11059 . . . . . . . 8 (𝐹 +P 𝐷) = (𝐷 +P 𝐹)
1514oveq1i 7441 . . . . . . 7 ((𝐹 +P 𝐷) +P 𝑆) = ((𝐷 +P 𝐹) +P 𝑆)
16 addasspr 11060 . . . . . . 7 ((𝐹 +P 𝐷) +P 𝑆) = (𝐹 +P (𝐷 +P 𝑆))
17 addasspr 11060 . . . . . . 7 ((𝐷 +P 𝐹) +P 𝑆) = (𝐷 +P (𝐹 +P 𝑆))
1815, 16, 173eqtr3i 2771 . . . . . 6 (𝐹 +P (𝐷 +P 𝑆)) = (𝐷 +P (𝐹 +P 𝑆))
1918oveq2i 7442 . . . . 5 (𝐴 +P (𝐹 +P (𝐷 +P 𝑆))) = (𝐴 +P (𝐷 +P (𝐹 +P 𝑆)))
20 addasspr 11060 . . . . 5 ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = (𝐴 +P (𝐹 +P (𝐷 +P 𝑆)))
21 addasspr 11060 . . . . 5 ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = (𝐴 +P (𝐷 +P (𝐹 +P 𝑆)))
2219, 20, 213eqtr4i 2773 . . . 4 ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆))
23 addcompr 11059 . . . . . . . 8 (𝐺 +P 𝐶) = (𝐶 +P 𝐺)
2423oveq1i 7441 . . . . . . 7 ((𝐺 +P 𝐶) +P 𝑅) = ((𝐶 +P 𝐺) +P 𝑅)
25 addasspr 11060 . . . . . . 7 ((𝐺 +P 𝐶) +P 𝑅) = (𝐺 +P (𝐶 +P 𝑅))
26 addasspr 11060 . . . . . . 7 ((𝐶 +P 𝐺) +P 𝑅) = (𝐶 +P (𝐺 +P 𝑅))
2724, 25, 263eqtr3i 2771 . . . . . 6 (𝐺 +P (𝐶 +P 𝑅)) = (𝐶 +P (𝐺 +P 𝑅))
2827oveq2i 7442 . . . . 5 (𝐵 +P (𝐺 +P (𝐶 +P 𝑅))) = (𝐵 +P (𝐶 +P (𝐺 +P 𝑅)))
29 addasspr 11060 . . . . 5 ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅)) = (𝐵 +P (𝐺 +P (𝐶 +P 𝑅)))
30 addasspr 11060 . . . . 5 ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅)) = (𝐵 +P (𝐶 +P (𝐺 +P 𝑅)))
3128, 29, 303eqtr4i 2773 . . . 4 ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅))
3222, 31eqeq12i 2753 . . 3 (((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅)) ↔ ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅)))
3313, 32bitrdi 287 . 2 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩ ↔ ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅))))
341, 33imbitrrid 246 1 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  cop 4637   class class class wbr 5148  (class class class)co 7431  Pcnp 10897   +P cpp 10899   ~R cer 10902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-ni 10910  df-pli 10911  df-mi 10912  df-lti 10913  df-plpq 10946  df-mpq 10947  df-ltpq 10948  df-enq 10949  df-nq 10950  df-erq 10951  df-plq 10952  df-mq 10953  df-1nq 10954  df-rq 10955  df-ltnq 10956  df-np 11019  df-plp 11021  df-enr 11093
This theorem is referenced by:  addsrmo  11111
  Copyright terms: Public domain W3C validator