![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addgt0sr | Structured version Visualization version GIF version |
Description: The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addgt0sr | ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelsr 11106 | . . . . 5 ⊢ <R ⊆ (R × R) | |
2 | 1 | brel 5754 | . . . 4 ⊢ (0R <R 𝐴 → (0R ∈ R ∧ 𝐴 ∈ R)) |
3 | ltasr 11138 | . . . . 5 ⊢ (𝐴 ∈ R → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵))) | |
4 | 0idsr 11135 | . . . . . 6 ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) | |
5 | 4 | breq1d 5158 | . . . . 5 ⊢ (𝐴 ∈ R → ((𝐴 +R 0R) <R (𝐴 +R 𝐵) ↔ 𝐴 <R (𝐴 +R 𝐵))) |
6 | 3, 5 | bitrd 279 | . . . 4 ⊢ (𝐴 ∈ R → (0R <R 𝐵 ↔ 𝐴 <R (𝐴 +R 𝐵))) |
7 | 2, 6 | simpl2im 503 | . . 3 ⊢ (0R <R 𝐴 → (0R <R 𝐵 ↔ 𝐴 <R (𝐴 +R 𝐵))) |
8 | 7 | biimpa 476 | . 2 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 𝐴 <R (𝐴 +R 𝐵)) |
9 | ltsosr 11132 | . . 3 ⊢ <R Or R | |
10 | 9, 1 | sotri 6150 | . 2 ⊢ ((0R <R 𝐴 ∧ 𝐴 <R (𝐴 +R 𝐵)) → 0R <R (𝐴 +R 𝐵)) |
11 | 8, 10 | syldan 591 | 1 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 Rcnr 10903 0Rc0r 10904 +R cplr 10907 <R cltr 10909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-omul 8510 df-er 8744 df-ec 8746 df-qs 8750 df-ni 10910 df-pli 10911 df-mi 10912 df-lti 10913 df-plpq 10946 df-mpq 10947 df-ltpq 10948 df-enq 10949 df-nq 10950 df-erq 10951 df-plq 10952 df-mq 10953 df-1nq 10954 df-rq 10955 df-ltnq 10956 df-np 11019 df-1p 11020 df-plp 11021 df-ltp 11023 df-enr 11093 df-nr 11094 df-plr 11095 df-ltr 11097 df-0r 11098 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |