Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addgt0sr | Structured version Visualization version GIF version |
Description: The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addgt0sr | ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelsr 10917 | . . . . 5 ⊢ <R ⊆ (R × R) | |
2 | 1 | brel 5677 | . . . 4 ⊢ (0R <R 𝐴 → (0R ∈ R ∧ 𝐴 ∈ R)) |
3 | ltasr 10949 | . . . . 5 ⊢ (𝐴 ∈ R → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵))) | |
4 | 0idsr 10946 | . . . . . 6 ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) | |
5 | 4 | breq1d 5099 | . . . . 5 ⊢ (𝐴 ∈ R → ((𝐴 +R 0R) <R (𝐴 +R 𝐵) ↔ 𝐴 <R (𝐴 +R 𝐵))) |
6 | 3, 5 | bitrd 278 | . . . 4 ⊢ (𝐴 ∈ R → (0R <R 𝐵 ↔ 𝐴 <R (𝐴 +R 𝐵))) |
7 | 2, 6 | simpl2im 504 | . . 3 ⊢ (0R <R 𝐴 → (0R <R 𝐵 ↔ 𝐴 <R (𝐴 +R 𝐵))) |
8 | 7 | biimpa 477 | . 2 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 𝐴 <R (𝐴 +R 𝐵)) |
9 | ltsosr 10943 | . . 3 ⊢ <R Or R | |
10 | 9, 1 | sotri 6061 | . 2 ⊢ ((0R <R 𝐴 ∧ 𝐴 <R (𝐴 +R 𝐵)) → 0R <R (𝐴 +R 𝐵)) |
11 | 8, 10 | syldan 591 | 1 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 class class class wbr 5089 (class class class)co 7329 Rcnr 10714 0Rc0r 10715 +R cplr 10718 <R cltr 10720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-oadd 8363 df-omul 8364 df-er 8561 df-ec 8563 df-qs 8567 df-ni 10721 df-pli 10722 df-mi 10723 df-lti 10724 df-plpq 10757 df-mpq 10758 df-ltpq 10759 df-enq 10760 df-nq 10761 df-erq 10762 df-plq 10763 df-mq 10764 df-1nq 10765 df-rq 10766 df-ltnq 10767 df-np 10830 df-1p 10831 df-plp 10832 df-ltp 10834 df-enr 10904 df-nr 10905 df-plr 10906 df-ltr 10908 df-0r 10909 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |